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Abstract:

Given a set A of activities expressed via temporal sto-
chastic automata, and a set O of observations (detections 
of low level events), we study the problem of identify-
ing instances of activities from A in O. While past work 
has developed algorithms to solve this problem, in this 
paper, we develop methods to significantly scale these al-
gorithms. Our PASS architecture consists of three parts: 
(i) leveraging past work to represent all activities in A via 
a single “merged” graph, (ii) partitioning the graph into 
a set of C sub graphs, where (C + 1) is the number of 
compute nodes in a cluster, and (iii) developing a parallel 
activity detection algorithm that uses a different compute 
node in the cluster to intensively process each sub graph. 
We propose three possible partitioning methods and a par-
allel activity-search detection (PASS Detect) algorithm 
that coordinates computations across nodes in the cluster. 
We report on experiments showing that our algorithms 
enable us to handle both large numbers of observations 
per second as well as large merged graphs. In particular, 
on a cluster with 9 compute nodes, PASS can reliably 
handle between 400K and 569K observations per second 
and merged graphs with as many as 50K vertices.
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Applications: 

1. Fraud in call data records
2. Online market place looks for fraudulent transaction in 
web transactions logs 
3. Future situations of brokerage house
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Existing System: 

We address the problem of scalably identifying instances 
of known activities (i.e., where activity models are known 
to the application developers such as in the cases listed 
above) in a high throughput stream of observations. We 
assume that activities are expressed as temporal stochas-
tic (TS) automata, following the framework of and its pre-
decessor. In particular, took a set of known activity mod-
els expressed as temporal stochastic automata and merged 
them into a single graph and then proposed an algorithm 
to track activities in observation streams consisting of 
up to 28.5K observations per second on merged graphs 
consisting of under 1000 vertices. In this paper, we build 
upon the work in and scale it up in two directions. First, 
we are able to look for far more activities than could—
our merged automata go to up to 50K vertices. Second, 
we are able to increase the throughput of observations to 
between 400K-569K observations per second.
	
Disadvantages: 
1.It does not detect all fraud transactions efficiently.
2.Its provide the reliable solution.

PROPOSED SYSTEM: 
In order to achieve this, in our PASS system we adopt a 
three-pronged approach illustrated in. We assume that we 
start with an initially given set A of activities expressed 
as temporal stochastic automata. Step1: In the very first 
step, shown in Fig. 1 with a 1 in a circle, we merge all 
of the activities in A into a single temporal multi-activity 
graph (TMAG). A TMAG captures all states and transi-
tions present in any of the activities in A. TMAGs were 
first proposed in [2] which showed that merging graphs 
allowed multiple automata to be processed efficiently. 

Implementation of Three Possible Partitioning Methods and a 
Parallel Activity-Search Detection (PASS-Detect) Algorithm That

 Coordinates Computations across Nodes in the Cluster
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Step2: PASS implements activity detection on a compute 
cluster consisting of (C + 1) compute nodes or proces-
sors. What we try to do in the second step, shown in Fig. 
1 with a 2 in a circle, is to partition the TMAG into C sub 
graphs. The idea is that one processor is used as a submit 
node and the remaining C processors are each assigned 
one of the sub graphs generated by partitioning. Splitting 
the TMAG allows us to scale the number of activities we 
can process as well as improves our processing time by 
using a compute cluster. Each component of the TMAG 
resulting from the split can be processed on an individual 
compute node in the cluster. We present three ways to par-
tition a TMAG. The Minimal Overlap Partitioning (MOP) 
algorithm splits the TMAG by assigning to each vertex 
a “temporal extent”. Intuitively, the temporal extent cap-
tures the period of time when the vertex can be active after 
the start of any activity in which that vertex is present. 

The intuition underlying minimal overlap partitioning is 
that if two vertices in a TMAG have similar temporal ex-
tents, then we should assign them to the same compute 
node. The Temporal Incidence Partitioning (TIP) method 
associates an “incidence” measure with any time interval. 
This incidence measure intuitively measures the number 
of vertices that can be active within a time interval. Some 
vertices, for instance, may occur at different time slices in 
different activities and as such, may have very wide time 
intervals. However, even with a very large temporal ex-
tent, the vertex may only be active infrequently within that 
temporal extent. TIP tries to split TMAGs by minimizing 
the standard deviation of these incidence measures. The 
Occurrence Probability Partitioning (OPP) algorithm 
transforms the TMAG into a weighted graph where the 
weights are learned by looking at actual observation (au-
tomaton state) streams to understand the true probability 
that one observation is seen after another observation. 
The idea is that if two observations occur consecutively 
very often within the real stream of observations being 
monitored, then these two observations often need to be 
processed very shortly after one another and hence, the 
corresponding two TMAG vertices should stay on the 
same compute node. OPP therefore weights edges in the 
TMAG using these co-occurrence probabilities and then 
partitions the TMAG using edge cuts after pruning away 
edges with very low weights.

Step 3: once the set A of activities we wish to detect are 
merged together into a TMAG and the resulting TMAG

is partitioned across C different compute nodes, we are 
ready to process an observation stream and identify in-
stances of the activities in A in the observation stream. To 
achieve this requires the core run-time component of the 
PASS system, shown in Step 3 (circle with a 3 embed-
ded in it) in Fig. 1. The Activity-Search Engine automati-
cally processes the observation stream using a decentral-
ized algorithm that allows multiple nodes to concurrently 
process different portions of the observation stream with 
seamless handoffs occurring as needed from one compute 
node to another.

Advantages: 
1.Detect the frauds in different number of applications
2.Reliable detection of all number frauds 
3.Quick detection is also possible here using the parallel 
activity search system.

Architecture: 

Modules Description: 
1.Design communication model.
2.Temporal stochastic autometa.
3.Partitioning TMAG (temporal multiple activity graph)
4.Parallel activity detection.
5.Performance evolution.

Design communication model:
We implemented PASS in Java. As the implementation 
required balancing fast network communication and sim-
plicity of use. When we were assessing the performance 
of the system by varying the number of compute nodes. 
First randomly creates a user specified number of vertices 
and then randomly generates outgoing edges based on a 
Gaussian distribution.
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Temporal activity graphs assume a temporal progression 
from a start node to an end node, that is, all paths through 
the graph have a temporal ordering.

Temporal stochastic autometa:

Hidden Markov Models and Dynamic Bayesian Networks 
have been used extensively for representing activities. A 
slight variant of these methods, stochastic automata, was 
used to represent activities in and subsequently, a slight 
extension called Temporal Stochastic Automata was in-
troduced showing that multiple stochastic automata can 
be merged together to recognize activities. This section 
does not contain new material instead it recapitulates defi-
nitions first provided in. A time span distribution specifies 
such transition probabilities, which may vary over time. 
In the following definition, a time interval is a closed in-
terval of the set T of time points, which in turn can be 
assumed to be non-negative integers.

Partitioning TMAG (temporal multiple activ-
ity graph)
Two phenomena occur: 

1) There may be thousands of known normal activities 
and as a consequence, TMAGs can be quite large, con-
sisting of tens of thousands of vertices and hundreds of 
thousands of edges;

2) The number of observations made per second is very 
high, consisting of hundreds of thousands of observations 
per second. In this paper we propose techniques that ex-
ploit a cluster of (C+1) compute nodes by partitioning the 
set of vertices of a given TMAG G into C components 
so that each component can be separately processed by a 
different compute node. The additional compute node is 
used as a submit node. 

After building a partition P = {P1, . . . , PC} of G, node 
N(Pi) will thus handle all tuples f such that f .obs € Pi. We 
assume that each compute node includes an implementa-
tion of a sequential activity detection algorithm such as. 
Our framework is capable of working with any sequential 
activity detection algorithm within a node as long as the 
“inter-node” communications and handoffs are handled 
properly. In Section 4 we will discuss how this occurs 
in our system, where we employ our PASS Detect algo-
rithm.

Parallel activity detection:

When we have (C + 1) cluster compute nodes available 
in a cluster for activity detection, PASS uses one of those 
compute nodes as a submit node and the other C compute 
nodes each store the component Pi of a partition P = {P1, 
. . . , PC} of the TMAG G associated with a given set A of 
activities. Each compute node N(Pi) stores the restriction 
of G to the vertices in the component Pi, denoted G(Pi). 
Moreover, each compute node stores information about 
the set of frontier vertices w.r.t. Pi. A frontier vertex w.r.t. 
Pi is a vertex vj  Pj with i _= j such that there exists a 
vertex vi  Pi such that either (vi, vj) or (vj, vi) is an edge 
in the TMAG. When vj is a frontier node w.r.t. Pi, N(Pi) 
also stores the location of N(Pj). This way, during activity 
detection, if vj is observed, then a smooth handoff can be 
made to compute node N(Pj).

Performance Evolution:

The performance of our partitioning schemes in terms of 
time to compute the partitions when varying TMAG sizes 
and number of compute nodes. OPP performs best in the 
majority of cases, with a performance gain that increases 
with larger TMAGs. On the other hand, it appears to suf-
fer more than MOP and TIP4 from the density of large 
TMAGs. All partitioning schemes scaled well with the 
size of the input TMAGs, and their performance is almost 
independent of the number of partition size.

CONCLUSION:

In this paper we investigate on set of activities presented 
via temporal stochastic automata, partitions of activities 
based on level based events, and also review the PASS 
architecture with various implementation parts with that 
coordinates computations across nodes in the cluster and 
also shown that this algorithms enables to handle both 
large numbers of observations per second as well as large 
merged graphs.
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