
 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 18

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 19

Abstract:

Given a set A of activities expressed via temporal sto-
chastic automata, and a set O of observations (detections
of low level events), we study the problem of identify-
ing instances of activities from A in O. While past work
has developed algorithms to solve this problem, in this
paper, we develop methods to significantly scale these al-
gorithms. Our PASS architecture consists of three parts:
(i) leveraging past work to represent all activities in A via
a single “merged” graph, (ii) partitioning the graph into
a set of C sub graphs, where (C + 1) is the number of
compute nodes in a cluster, and (iii) developing a parallel
activity detection algorithm that uses a different compute
node in the cluster to intensively process each sub graph.
We propose three possible partitioning methods and a par-
allel activity-search detection (PASS Detect) algorithm
that coordinates computations across nodes in the cluster.
We report on experiments showing that our algorithms
enable us to handle both large numbers of observations
per second as well as large merged graphs. In particular,
on a cluster with 9 compute nodes, PASS can reliably
handle between 400K and 569K observations per second
and merged graphs with as many as 50K vertices.

Keywords:
Activity detection, temporal stochastic automata, parallel
computation.

Applications:

1. Fraud in call data records
2. Online market place looks for fraudulent transaction in
web transactions logs
3. Future situations of brokerage house

Shaik Omer Alamoodi
M.Tech Student,

Department of CSE,
Nawab Shah Alam Khan College of Engineering &

Technology, Malakpet, Hyderabad – 500024,
Telangana, India.

Dr.Mohammed Waheeduddin Hussain
Professor & HOD,

Department of CSE,
Nawab Shah Alam Khan College of Engineering &

Technology, Malakpet, Hyderabad – 500024,
Telangana, India.

Existing System:

We address the problem of scalably identifying instances
of known activities (i.e., where activity models are known
to the application developers such as in the cases listed
above) in a high throughput stream of observations. We
assume that activities are expressed as temporal stochas-
tic (TS) automata, following the framework of and its pre-
decessor. In particular, took a set of known activity mod-
els expressed as temporal stochastic automata and merged
them into a single graph and then proposed an algorithm
to track activities in observation streams consisting of
up to 28.5K observations per second on merged graphs
consisting of under 1000 vertices. In this paper, we build
upon the work in and scale it up in two directions. First,
we are able to look for far more activities than could—
our merged automata go to up to 50K vertices. Second,
we are able to increase the throughput of observations to
between 400K-569K observations per second.
	
Disadvantages:
1.It does not detect all fraud transactions efficiently.
2.Its provide the reliable solution.

PROPOSED SYSTEM:
In order to achieve this, in our PASS system we adopt a
three-pronged approach illustrated in. We assume that we
start with an initially given set A of activities expressed
as temporal stochastic automata. Step1: In the very first
step, shown in Fig. 1 with a 1 in a circle, we merge all
of the activities in A into a single temporal multi-activity
graph (TMAG). A TMAG captures all states and transi-
tions present in any of the activities in A. TMAGs were
first proposed in [2] which showed that merging graphs
allowed multiple automata to be processed efficiently.

Implementation of Three Possible Partitioning Methods and a
Parallel Activity-Search Detection (PASS-Detect) Algorithm That

 Coordinates Computations across Nodes in the Cluster

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 18

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 19

Step2: PASS implements activity detection on a compute
cluster consisting of (C + 1) compute nodes or proces-
sors. What we try to do in the second step, shown in Fig.
1 with a 2 in a circle, is to partition the TMAG into C sub
graphs. The idea is that one processor is used as a submit
node and the remaining C processors are each assigned
one of the sub graphs generated by partitioning. Splitting
the TMAG allows us to scale the number of activities we
can process as well as improves our processing time by
using a compute cluster. Each component of the TMAG
resulting from the split can be processed on an individual
compute node in the cluster. We present three ways to par-
tition a TMAG. The Minimal Overlap Partitioning (MOP)
algorithm splits the TMAG by assigning to each vertex
a “temporal extent”. Intuitively, the temporal extent cap-
tures the period of time when the vertex can be active after
the start of any activity in which that vertex is present.

The intuition underlying minimal overlap partitioning is
that if two vertices in a TMAG have similar temporal ex-
tents, then we should assign them to the same compute
node. The Temporal Incidence Partitioning (TIP) method
associates an “incidence” measure with any time interval.
This incidence measure intuitively measures the number
of vertices that can be active within a time interval. Some
vertices, for instance, may occur at different time slices in
different activities and as such, may have very wide time
intervals. However, even with a very large temporal ex-
tent, the vertex may only be active infrequently within that
temporal extent. TIP tries to split TMAGs by minimizing
the standard deviation of these incidence measures. The
Occurrence Probability Partitioning (OPP) algorithm
transforms the TMAG into a weighted graph where the
weights are learned by looking at actual observation (au-
tomaton state) streams to understand the true probability
that one observation is seen after another observation.
The idea is that if two observations occur consecutively
very often within the real stream of observations being
monitored, then these two observations often need to be
processed very shortly after one another and hence, the
corresponding two TMAG vertices should stay on the
same compute node. OPP therefore weights edges in the
TMAG using these co-occurrence probabilities and then
partitions the TMAG using edge cuts after pruning away
edges with very low weights.

Step 3: once the set A of activities we wish to detect are
merged together into a TMAG and the resulting TMAG

is partitioned across C different compute nodes, we are
ready to process an observation stream and identify in-
stances of the activities in A in the observation stream. To
achieve this requires the core run-time component of the
PASS system, shown in Step 3 (circle with a 3 embed-
ded in it) in Fig. 1. The Activity-Search Engine automati-
cally processes the observation stream using a decentral-
ized algorithm that allows multiple nodes to concurrently
process different portions of the observation stream with
seamless handoffs occurring as needed from one compute
node to another.

Advantages:
1.Detect the frauds in different number of applications
2.Reliable detection of all number frauds
3.Quick detection is also possible here using the parallel
activity search system.

Architecture:

Modules Description:
1.Design communication model.
2.Temporal stochastic autometa.
3.Partitioning TMAG (temporal multiple activity graph)
4.Parallel activity detection.
5.Performance evolution.

Design communication model:
We implemented PASS in Java. As the implementation
required balancing fast network communication and sim-
plicity of use. When we were assessing the performance
of the system by varying the number of compute nodes.
First randomly creates a user specified number of vertices
and then randomly generates outgoing edges based on a
Gaussian distribution.

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 20

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 21

Temporal activity graphs assume a temporal progression
from a start node to an end node, that is, all paths through
the graph have a temporal ordering.

Temporal stochastic autometa:

Hidden Markov Models and Dynamic Bayesian Networks
have been used extensively for representing activities. A
slight variant of these methods, stochastic automata, was
used to represent activities in and subsequently, a slight
extension called Temporal Stochastic Automata was in-
troduced showing that multiple stochastic automata can
be merged together to recognize activities. This section
does not contain new material instead it recapitulates defi-
nitions first provided in. A time span distribution specifies
such transition probabilities, which may vary over time.
In the following definition, a time interval is a closed in-
terval of the set T of time points, which in turn can be
assumed to be non-negative integers.

Partitioning TMAG (temporal multiple activ-
ity graph)
Two phenomena occur:

1) There may be thousands of known normal activities
and as a consequence, TMAGs can be quite large, con-
sisting of tens of thousands of vertices and hundreds of
thousands of edges;

2) The number of observations made per second is very
high, consisting of hundreds of thousands of observations
per second. In this paper we propose techniques that ex-
ploit a cluster of (C+1) compute nodes by partitioning the
set of vertices of a given TMAG G into C components
so that each component can be separately processed by a
different compute node. The additional compute node is
used as a submit node.

After building a partition P = {P1, . . . , PC} of G, node
N(Pi) will thus handle all tuples f such that f .obs € Pi. We
assume that each compute node includes an implementa-
tion of a sequential activity detection algorithm such as.
Our framework is capable of working with any sequential
activity detection algorithm within a node as long as the
“inter-node” communications and handoffs are handled
properly. In Section 4 we will discuss how this occurs
in our system, where we employ our PASS Detect algo-
rithm.

Parallel activity detection:

When we have (C + 1) cluster compute nodes available
in a cluster for activity detection, PASS uses one of those
compute nodes as a submit node and the other C compute
nodes each store the component Pi of a partition P = {P1,
. . . , PC} of the TMAG G associated with a given set A of
activities. Each compute node N(Pi) stores the restriction
of G to the vertices in the component Pi, denoted G(Pi).
Moreover, each compute node stores information about
the set of frontier vertices w.r.t. Pi. A frontier vertex w.r.t.
Pi is a vertex vj Pj with i _= j such that there exists a
vertex vi Pi such that either (vi, vj) or (vj, vi) is an edge
in the TMAG. When vj is a frontier node w.r.t. Pi, N(Pi)
also stores the location of N(Pj). This way, during activity
detection, if vj is observed, then a smooth handoff can be
made to compute node N(Pj).

Performance Evolution:

The performance of our partitioning schemes in terms of
time to compute the partitions when varying TMAG sizes
and number of compute nodes. OPP performs best in the
majority of cases, with a performance gain that increases
with larger TMAGs. On the other hand, it appears to suf-
fer more than MOP and TIP4 from the density of large
TMAGs. All partitioning schemes scaled well with the
size of the input TMAGs, and their performance is almost
independent of the number of partition size.

CONCLUSION:

In this paper we investigate on set of activities presented
via temporal stochastic automata, partitions of activities
based on level based events, and also review the PASS
architecture with various implementation parts with that
coordinates computations across nodes in the cluster and
also shown that this algorithms enables to handle both
large numbers of observations per second as well as large
merged graphs.

References:

[1]Andrea Pugliese, V. S. Subrahmanian, Christopher
Thomas, and Cristian Molinaro, PASS: A Parallel Ac-
tivity-Search System, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 26,
NO. 8, AUGUST 2014.

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 20

 Volume No: 1 (2015), Issue No: 9 (February) February 2016
 www. IJRACSE.com Page 21

[2] S. Lühr, H. H. Bui, S. Venkatesh, and G. A. W. West,
“Recognition of human activity through hierarchical
stochastic learning,” in Proc. PerCom., Fort Worth, TX,
USA, Mar. 2003, pp. 416–422.

[3] T. Duong, H. Bui, D. Phung, and S. Venkatesh, “Activ-
ity recognition and abnormality detection with the switch-
ing hidden semi-Markov model,” in Proc. IEEE CVPR,
Washington, DC, USA, 2005.

[4] T. V. Duong, D. Q. Phung, H. H. Bui, and S. Ven-
katesh, “Efficient duration and hierarchical modeling for
human activity recognition,” Artif. Intell., vol. 173, no.
7–8, pp. 830–856, May 2009.

[5] R. Hamid, Y. Huang, and I. Essa, “ARGMode activ-
ity recognition using graphical models,” in Proc. IEEE
CVPR, Madison, WI, USA, 2003.

[6] M. Albanese, S. Jajodia, A. Pugliese, and V. S. Subrah-
manian, “Scalable analysis of attack scenarios,” in Proc.
ESORICS, Leuven, Belgium, 2011, pp. 416–433.

[7] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and
their uses in improved network optimization algorithms,”
in Proc. FOCS, 1984, pp. 338–346.

[8] G. Palshikar and M. Apte, “Collusion set detection us-
ing graph clustering,” Data Knowl. Eng., vol. 16, no. 1,
pp. 135–164, 2008.

Author’s Details:

Shaik Omer Alamoodi
M.Tech Student,

Department of CSE,
Nawab Shah Alam Khan College of Engineering &

Technology, Malakpet, Hyderabad – 500024,
Telangana, India.

