
Abstract:
The big data is the concept of large spectrum of data also
can be referred as discrete data. It refers to the huge scale
distributed data processing applications that operate usu-
ally on large amounts of data. The two core concepts of
the hadoop are Hadoop Distributed File System(HDFS)
which is the storage mechanism and Map Reduce which
is the programming language. Results are produced faster
than other traditional database operations. Study of the
Map Reduce framework is that the framework generates a
large amount of intermediate data. Such existing informa-
tion is thrown away after the tasks finishes. Data-aware
cache framework is meant for large data applications. Big
data open-source implementation deals with extensively
large sets of data where the data may be structured or un-
structured for big-data applications. In Dache, tasks sub-
mit their intermediate results to the cache manager and
queries the cache manager before executing the actual
computing work. A task, before initiating its execution,
queries the cache manager for potential matched process-
ing results, which could accelerate its execution or even
completely saves the execution. We implement Dache by
extending the relevant components of the Hadoop proj-
ect.

Keywords:
Hadoop Distribute File System, Dache, Mapreduce
Framework.

1.INTRODUCTION:
The main reason of big data existence is when the tradi-
tional relational databases management systems were not
capable of processing the unstructured data . Normally
big data is measured in Zeta bytes and Terabytes.The Big
data is a large corpse of data on which applications works
on eccentrically enormous amount of data. There are sev-
eral challenges in Big data which includes sharing, stor-
age, visualization, analysis, privacy and security. Big data
analytics has become all the rage.

K.Jaya Jones
PG Student,

Department of CSE,
VNR Vignana Jyothi Institute of Engineering and
Technology, Hyderabad, Telangana, 500072, India.

A. Madhavi
Assistant Professor,
Department of CSE,

VNR Vignana Jyothi Institute of Engineering and
Technology, Hyderabad, Telangana, 500072, India.

The Hadoop Map Reduce is an open source software
framework developed by Apache which assists in distrib-
uted processing of larger data sets across clusters of com-
modity servers. The three main components of Apache
Hadoop 2 are Hadoop Distributed File System, Yet An-
other Resource Negotiator and Map Reduce framework.
The Map Reduce is a model for processing huge amount
of data sets, Hadoop Map Reduce is a software framework
for processing applications which possess vast amounts
of data. A Map Reduce job usually splits the input data-set
into independent chunks which are processed by the map
tasks in a completely parallel manner. The framework
looks after scheduling tasks, re-executes the unsuccessful
tasks and also monitors them.

Google Map Reduce is a programming model and also a
software framework for Big -scale distributed Comput-
ing on large amounts of data. Figure (i) illustrates the
high level work flow of a Task. Application develop-
ers specify the computation in terms of reduce function
and a map and the underlying Map Reduce Task sched-
uling system automatically parallelizes the computation
across the cluster of machines. While Map Reduce ob-
tain popularity for its simple programming interface and
excellent Performance when implement a large spectrum
of applications.In “Big and Distributed data application”
large amount of input data is presented and it is split to
the Task Tracker. Every data file is called as “Records”. In
Map Reduce phase all input data is distributed to all Task
Tracker. After Mapping, shuffling and sorting is done by
using intermediate file created by the Task Tracker.

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 7

Data Aware Caching Using Map Reduce Framework

Again it submitted to the Task Tracker for the Reducing
phase. Finally by using Map Reduce the Reduced output
is generated in the disk. Still, there is a restriction of the
system, i.e., the inefficiency in incremental processing.
Incremental processing refers to the applications that
incrementally grow the input data and continuously ap-
ply computations on the input in order to produce out-
put. There are potential duplicate computations and op-
erations being performed in this process. However, Map
Reduce does not have the any technique to identify such
duplicate computations and accelerate job execution. Mo-
tivated by this observation, In this paper we propose, a
data-aware cache system for big data applications using
the Map Reduce framework, which aims at extending the
Map Reduce framework and provisioning a cache layer
for efficiently identifying and accessing cache items in a
Map Reduce job.

2.RELATED WORK / LITERATURE
REVIEW:
Daniel Peng et al. proposed, a system for incrementally
processing updates to a large data set, and deployed it to
create the Google web search index. By replacing a batch
based indexing system with an indexing system based on
incremental processing using Percolator, Auther process
the same number of documents per day

Weikuan Yu et al. proposed, Hadoop-A, an acceleration
framework that optimizes Hadoop with plugin compo-
nents for fast data movement, overcoming the existing
limitations. A novel network-levitated merge algorithm is
introduced to merge data withoutrepetition and disk ac-
cess. In addition, a full pipeline is designed to overlap
the shuffle, merge and reduce phases. Our experimental
results show that Hadoop-A significantly speeds up data
movement in MapReduce and doubles the throughput of
Hadoop.

 Jiong Xie et al. proposed that ignoring the data locality
issue in heterogeneous environments can noticeably re-
duce the MapReduce performance. In this paper, author
addresses the problem of how to place data across nodes
in a way that each node has a balanced data processing
load. Given a data intensive application running on a
Hadoop MapReduce cluster, our data placement scheme
adaptively balances the amount of data stored in each
node to achieve improved data-processing performance.

Experimental results on two real data-intensive applica-
tions show that our data placement strategy can always
improve the MapReduce performance by rebalancing
data across nodes before performing a data-intensive ap-
plication in a heterogeneous Hadoop cluster.

3.PROBLEM STATEMENT:
In current Hadoop Map Reduce framework is that the
framework generates a large flow of intermediate data.
Map Reduce is unable to save that such data so they are
deleted after used. But in our system we introducing the
cache memory that holds the intermediate results in it,
because of that the data processing, means job execut-
ing processing is faster than old system, So that system
is a time consuming, repetition of data processing are re-
duced.

4.CACHE DESCRIPTION ON BIG DATA
ENVIRONMENT:
Cache refers to the intermediate data that is produced by
worker nodes/processes during the execution of a Map
Reduce task. A piece of cached data is stored in a Distrib-
uted File System (DFS). The content of a cache item is
described by the original data and the operations applied.
Formally, a cache item is described by a 2-tuple: Origin,
Operation. Origin is the name of a file in the DFS. Op-
eration is a linear list of available operations performed
on the Origin file. For example, in the word count ap-
plication, each mapper node/process emits a list of word,
count tuples that record the count of each word in the file
that the mapper processes. Dache stores this list to a file.
This file becomes a cache item. Given an original input
data file, word list abc.txt, the cache item is described by
word list abc.txt, item count. Here, item refers to white-
space-separated character strings. Note that the new line
character is also considered as one of the white spaces,
so item precisely captures the word in a text file and item
count directly corresponds to the word count operation
performed on the data file. The exact format of the cache
description of different applications varies according to
their specific semantic contexts. This could be designed
and implemented by application developers who are re-
sponsible for implementing their MapReduce tasks. In
our prototype, we present several supported operations:

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 8

Item Count:
The count of all occurrences of each item in a text file.
The items are separated by a userdefined separator.

Sort:
This operation sorts the records of the file. The compari-
son operator is defined on two items and returns the order
of precedence.

Selection:
This operation selects an item that meets a given criterion.
It could be an order in the list of items. A special selection
operation involves selecting the median of a linear list of
items.

Transform:
This operation transforms each item in the input file into a
different item. The transformation is described further by
the other information in the operation descriptions. This
can only be specified by the application developers.

Classification:
This operation classifies the items in the input file into
multiple groups. This could be an exact classification,
where a deterministic classification criterion is applied se-
quentially on each item, or an approximate classification,
where an iterative classification process is applied and the
iteration count should be recorded.

5.PROTOCOL:
Dache has classified cache items into types namely, map
cache and reduce cache. These two types interact with
each other in different scenarios and there are some com-
plexities when it comes to sharing. In map cache, sharing
becomes effortless since the operations enforced are well
known but in reduce phase sharing becomes a complex
task.

Cache request and reply:
The cache request and reply takes place in both map cache
and reduce cache.

Map Cache:
Before commencing the file splitting phase, the job tracker
is responsible for sending out cache requests to the cache
manager. In return, the cache manager responses with a
list of cache descriptions.

Reduce Cache: The requested cache item is compared
with the cached items in the cache manager’s database.
Cache manager identifies the overlaps of the original in-
put files of the requested cache and stored cache and for
this purpose linear scan method is used.

6.CONCLUSION:
Hadoop is the tool used to manage and process the big
data contents, which is the biggest challenge in the recent
years. By using Hadoop distributed file system and map
reduce concepts in hadoop we can process any big data
contents within short period of time. HDFS acts as the
storage mechanism in the hadoop and map reduce is used
as the programming language in order to process the con-
tents. Map reduce is operated with the help of two func-
tions, mapper function and the reducer function.

7.FUTURE WORKS:
Hadoop is widely used for strategic decision making in the
big data applications. It has many application areas like
fraud detection, pattern recognition, content optimizing,
marketing analysis, network analysis, large data transfor-
mations etc. are some of them. Hadoop framework can
be used to make informed decisions in logistic freight in-
order to perform the freight audit. By doing freight audit
they can prevent organizations from overpaying for the
services of freight forwarders, which they haven’t used.

8.REFERENCES:
[1] J. Dean and S. Ghemawat, Mapreduce: Simplified
data processing on large clusters, Commun. of ACM, vol.
51, no. 1, pp. 107-113, 2008.

[2] Hadoop, http://hadoop.apache.org/, 2013.

[3] Java programming language, http://www.java.com/,
2013.

[4] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, The many faces of publish/subscribe, ACM
Comput. Surv., vol. 35, no. 2, pp. 114-131, 2003.

[5] Cache algorithms, http://en.wikipedia.org/wiki/Cache
algorithms, 2013.

[6] Amazon web services, http://aws.amazon.com/, 2013.

[7] Google compute engine, http://cloud.google.com/
products/computeengine.html, 2013.

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 8

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 9

[8] G. Ramalingam and T. Reps. A categorized bibliogra-
phy on incremental computation, in Proc. of POPL ’93,
New York, NY, USA, 1993.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gru-
ber. Bigtable: A distributed storage system for structured
data, in Proc. Of OSDI’2006, Berkeley, CA, USA, 2006.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, The
google file system, SIGOPS Oper. Syst. Rev., vol. 37, no.
5, pp. 29-43, 2003.

[11] D. Peng and F. Dabek, Largescale incremental pro-
cessing using distributed transactions and notifications, in
Proc. Of OSDI’ 2010, Berkeley, CA, USA, 2010.

[12] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyra-
kis, J. Leverich, D. Mazi‘eres, S. Mitra, A. Narayanan, D.
Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble, Strat-
mann, and R. Stutsman, The case for ramcloud, Commun.
of ACM, vol. 54, no. 7, pp. 121-130, 2011.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
Dryad: Distributed data-parallel programs from sequen-
tial building blocks, SIGOPS Oper. Syst. Rev., vol. 41,
no. 3, pp. 59-72, 2007.

[14] L. Popa, M. Budiu, Y. Yu, and M. Isard, Dryadinc:
Reusing work in large-scale computations, in Proc. Of
HotCloud’09, Berkeley, CA, USA, 2009.

[15] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M.
Larsson, A. Neumann, V. B. N. Rao, V. Sankarasubrama-
nian, S. Seth, C. Tian, T. ZiCornell, and X. Wang, Nova:
Continuous pig/hadoop workflows, in Proc. of SIG-
MOD’2011, New York, NY, USA, 2011.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins, Pig latin: A not-so-foreign language for
data processing, in Proc. of SIGMOD’2008, New York,
NY,USA, 2008.

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 10

 Volume No: 2 (2016), Issue No: 7 (December) December 2016
 www. IJRACSE.com Page 1

