

 Page 45

Image Clustering Using Hadoop Image Processing Interface

Damarla Haritha

Department of Computer Science and Engineering

MVSR Engineering College,

Hyderabad, Telangana - 501510, India.

Abstract

Huge amounts of images are uploaded into the internet

daily. As large image collections cannot be processed

efficiently on one computer, image processing often

requires distributed computing. Image processing can

be very computationally demanding due to the large

amount of images to process. Image Processing with

Parallel computing is an alternative way to solve image

processing problems that require large times of

processing or handling large amounts of information

in "acceptable time". The main idea of parallel image

processing is to divide the problem into simple tasks

and solve them concurrently, in such a way the total

time can be divided between the total tasks (in the best

case).

As there is no such distributed framework for

processing of images, HIPI (Hadoop Image Processing

Interface) allows image processing on distributed

framework. Hadoop provides distributed computing

framework for data but not for images. Images cannot

be processed using hadoop, inorder to analyse large

datasets of images, there is an interface for image

processing i.e hadoop image processing

interface(HIPI). HIPI is an interface over the hadoop

file system which helps the users to run various image

processing algorithms and analyse the images on a

distributed framework. Hipi provides such a

mechanism to process huge data sets of images. The

Analysed images are then clustered using the em

clustering algorithm

Key words: Image processing, Parallel Computing,

Distributed Computing, HIPI

INTRODUCTION

Distributed computing is a method of computer

processing in which different parts of a program are run

simultaneously on two or more computers that are

communicating with each other over a network.

Distributed computing is a type of segmented or parallel

computing, but the latter term is most commonly used to

refer to processing in which different parts of a program

run simultaneously on two or more processors that are

part of the same computer. While both types of

processing require that a program be segmented divided

into sections that can run simultaneously, distributed

computing also requires that the division of the program

take into account the different environments on which

the different sections of the program will be running.

A Framework in which large problems can be divided

into many small problems which are distributed to many

computers. Later, the small results are reassembled into a

larger solution. Distributed computing [1] is a natural

result of using networks to enable computers to

communicate efficiently.

Distributed Computing framework is used for creating

and using compute clusters to execute computations in

parallel across multiple processors in a single machine

(SMP) [3-5], among many machines in a cluster, grid or

cloud.

Distributed computing is the process of aggregating the

power of several computing entities, which are logically

distributed and may even be geologically distributed, to

collaboratively run a single computational task in a

transparent and coherent way, so that they appear as a

single, centralized system [2]. Parallel computing is the

 Page 46

simultaneous execution of the same task on multiple

processors in order to obtain faster results. It is widely

accepted that parallel computing is a branch of

distributed computing, and puts the emphasis on

generating large computing power by employing

multiple processing entities simultaneously for a single

computation task.

These multiple processing entities can be a

multiprocessor system, which consists of multiple

processors in a single machine connected by bus or

switch networks, or a multicomputer system, which

consists of several independent computers

interconnected by telecommunication networks or

computer networks. Besides in parallel computing,

distributed computing has also gained significant

development in enterprise computing. The main

difference between enterprise distributed computing and

parallel distributed computing [4] is that the former

mainly targets on integration of distributed resources to

collaboratively finish some task, while the later targets

on utilizing multiple processors simultaneously to finish

a task as fast as possible.

LITERATURE STUDY

Distributed Computing Framework

Distributed computing is a method of computer

processing in which different parts of a program are run

simultaneously on two or more computers that are

communicating with each other over a network.

Distributed computing is a type of segmented or parallel

computing, but the latter term is most commonly used to

refer to processing in which different parts of a program

run simultaneously on two or more processors that are

part of the same computer. While both types of

processing require that a program be segmented divided

into sections that can run simultaneously, distributed

computing also requires that the division of the program

take into account the different environments on which

the different sections of the program will be running.

A Framework in which large problems can be divided

into many small problems that are distributed to many

computers is called distributed framework. Later, the

small results are reassembled into a larger solution.

Distributed computing is a natural result of using

networks to enable computers to communicate

efficiently.

Distributed Computing framework is used for creating

and using compute clusters to execute computations in

parallel across multiple processors in a single machine

(SMP), among many machines in a cluster, grid or cloud.

Apache Hadoop

The Apache Hadoop MapReduce project is a distributed

computing framework that enables developers to write

applications which run reliably on a large number of

unreliable machines with the goal of processing Terabyte

and larger data sets in paralleling clusters consisting of

thousands of nodes [3]. Hadoop is an open source

implementation of the MapReduce framework inspired

by Google MapReduce, and the Google File System

(GFS)[12], although the two systems are very different.

The Hadoop Distributed File System, inspired by GFS

from Google [2], is a distributed filesystem which runs

on low cost commodity hardware in a fault tolerant

manner to redundantly store Terabyte and larger data

sets.

 Page 47

Hazelcast

Hazelcast[2] is an open source in-memory data grid

based on Java. The Hazelcast[2] company is funded by

venture capital. In a Hazelcast[2] grid, data is evenly

distributed among the nodes of a computer cluster,

allowing for horizontal scaling both in terms of available

storage space and processing power.

JPPF[3] is a distributed parallel processing framework

based on a master/worker architecture. A JPPF grid is

made of 3 sorts of components that communicate with

each other: clients which submit the work to the grid,

nodes which execute the work, and servers which

receive the work from clients and distribute it to the

nodes in parallel.

Apache spark

Apache Spark[7] is an in-memory distributed data

analysis platform that speeds up task processing. It

provides high-level APIs in Java. It also supports a rich

set of higher-level tools, including Shark SQL for SQL

and structured data processing, MLlib for machine

learning, GraphX for graph processing, and Spark

Streaming [8], helping the development of parallel

applications.

HIPI (HADOOP IMAGE PROCESSING

INTERFACE)

The HIPI Framework:

HIPI[15] is an open-source Hadoop Image Processing

Interface that aims to create an interface for Image

Processing(IP) with Map Reduce technology. HIPI

abstracts the highly technical details of Hadoop’s system

and is flexible enough to implement IP algorithms.

The following goals of HIPI are:

1. HIPI provides an open, extensible library for IP using

Map Reduce technology.

2. With the help of HIPI, images are stored into the

HDFS easily.

3. HIPI allows simple filtering of set of images.

4. Simple and unambiguous interface for IP in hadoop.

5. Enhances parallel processing of images.

Fig 2.6: HIPI Map Reduce

The following work flow of HIPI is represented as:

Fig 2.7: HIPI Framework

Data Storage:

A HIPI Image Bundle data type that stores many images

in one large file so that MapReduce jobs can be

performed more efficiently. A HIPI [4] Image Bundle

consists of two files: a data file containing concatenated

images and an index file containing information about

the offsets of images in the data file as shown in the

below fig.

Fig 2.8: A depiction of the relationship between the

index and data files in a HIPI Image Bundle

 Page 48

Downloading Images:

The following steps are used for downloading the

images. They are:

1. The list of images should be stored by their image urls

and should be present in a text file with exactly one

image url per line.

2. For parallel execution, the input list of image urls are

split and the number of nodes used to download these

images are specified.

3. Download the images from the internet using the url's.

4. The downloaded images are stored in the image

bundle (HIB).

XHAMI (Extended HDFS and Map Reduce Interface

for Image Processing Applications)

Image processing applications deal with processing of

pixels in parallel, for which Hadoop and MapReduce can

be effectively used to obtain higher throughputs.

XHAMI [4] offers extended library of HDFS [5] and

MapReduce to process the single large scale images with

high level of abstraction over writing and reading the

images. XHAMI [4] has an API to implement Image

processing that is two phase extensions to HDFS and

MapReduce programming model.

Fig 3.1: Flowchart of environmental set up of Hadoop,

HIPI,Gradle

ALGORITHM TO COMPUTE GREY LEVEL

HISTOGRAM OF AN IMAGE

Algorithm:

Input: image, no. Of bins

Output: histogram values.

Steps:

1. Read the Input image .

2. Obtain the histogram of the input image by traversing

image pixel data in raster-scan order and update running

average in the bins.

Usage:

Haritha@ Haritha-Vostro-3549:~/work/hipi$ hadoop

jar build/libs/helloWorld.jar tigers.hib hist1

ALGORITHM TO COMPUTE MEAN VALUES OF

AN IMAGE

Algorithm:

Input: image

Output: average values.

Steps:

1. Read the Input image.

2. Obtain the mean values of the input image by

averaging image pixel data and update running averages

cumulatively.

Usage:

Haritha@ Haritha -Vostro-3549:~/work/hipi$ hadoop

jar build/libs/helloWorld.jar tigers.hib average

EM CLUSTERING ALGORITHM

The EM algorithm was explained and given its name in a

classic 1977 paper by Arthur Dempster, Nan Laird, and

Donald Rubin. They pointed out that the method had

been "proposed many times in special circumstances" by

earlier authors. In particular, a very detailed treatment of

the EM method [6] for exponential families was

published by Rolf Sundberg in his thesis and several

papers following his collaboration with Per Martin-Löf

and Anders Martin-Löf.

Algorithm Overview

An expectation–maximization (EM) algorithm is an

 Page 49

iterative method for finding maximum likelihood or

maximum a posteriori (MAP) [7] estimates of

parameters in statistical models, where the model

depends on unobserved latent variables. The EM

iteration alternates between performing an expectation

(E) step, which creates a function for the expectation of

the log-likelihood evaluated using the current estimate

for the parameters, and maximization (M) step, which

computes parameters maximizing the expected log-

likelihood found on the E step. These parameter-

estimates are then used to determine the distribution of

the latent variables in the next E step.

EM Clustering

EM is an algorithm for maximizing a likelihood function

when some of the variables in your model are

unobserved (i.e. when you have latent variables).

To maximize a function, why don't we just use the

existing machinery for maximizing a function. Well, if

you try to maximize this by taking derivatives and

setting them to zero, you find that in many cases the

first-order conditions don't have a solution. There's a

chicken-and-egg problem in that to solve for your model

parameters you need to know the distribution of your

unobserved data; but the distribution of your unobserved

data is a function of your model parameters.

E-M tries to get around this by iteratively guessing a

distribution for the unobserved data, then estimating the

model parameters by maximizing something that is a

lower bound on the actual likelihood function, and

repeating until convergence - The EM algorithm Starts

with guess for values of your model parameters.

E-step

For each data point that has missing values, use your

model equation to solve for the distribution of the

missing data given your current guess of the model

parameters and given the observed data (note that you

are solving for a distribution for each missing value, not

for the expected value).

Now that we have a distribution for each missing value,

we can calculate the expectation of the likelihood

function with respect to the unobserved variables. If our

guess for the model parameter was correct, this expected

likelihood will be the actual likelihood of our observed

data; if the parameters were not correct, it will just be a

lower bound.

M-step

Now that we've got an expected likelihood function with

no unobserved variables in it, maximize the function as

you would in the fully observed case, to get a new

estimate of your model parameters.

Repeat until convergence.

Applications

EM is frequently used for data clustering in machine

learning and computer vision. In natural language

processing, two prominent instances of the algorithm are

the Baum-Welch algorithm [8] (also known as forward-

backward) and the inside-outside algorithm for

unsupervised induction of probabilistic context-free

grammars.

In psychometrics, EM is almost indispensable for

estimating item parameters and latent abilities of item

response theory models.

With the ability to deal with missing data and observe

unidentified variables, EM is becoming a useful tool to

price and manage risk of a portfolio [9].

The EM algorithm (and its faster variant Ordered subset

expectation maximization) is also widely used in

medical image reconstruction, especially in positron

emission tomography and single photon emission

computed tomography. See below for other faster

variants of EM.

RESULTS

This chapter shows the results of an image dataset of

1000 images and then the images are clustered based on

 Page 50

their grey level histogram.

Input image folder (Tigers):

Input image in HDFS (Tigers.hib):

Grey level Histogram Results:

The following shows the results of 4 images that are

given as input to the histogram algorithm and the

histogram values of the images are obtained respectively.

Table 6.1: List of Grey level Histogram values

Mean value Results:

The following shows the results of 4 images that are

given as input to the mean algorithm and the mean

values of the images are obtained respectively.

Table 6.2: List of Mean values

EM Clustering

The following shows the results of Clustering 1000

images on 10 clusters using EM Clustering algorithm on

a single node.

The 1000 images are put into a folder on the physical

system

$mkdir /home/bharghavi/Desktop/images

 Page 51

 Page 52

These 1000 images are saved into the hdfs as

images.hib. The screen shot is given below:

Conclusion

HIPI is an image processing map-reduce framework that

is designed to hide the complex details of Hadoop’s

powerful Map-reduce framework for processing the

images. HIPI provides a format for storing images for

efficient access within the Map Reduce pipeline, and

simple methods for creating and storing image files of

the float type and is stored in the form of HIB. HIPI

interface brings about a new level of simplicity for

creating large-scale vision applications that use the map-

reduce framework for the processing of images. The

features of the images are extracted by HIPI framework

and given to the EM clustering algorithm in Hadoop for

clustering.

Future Work

The future work includes implementation of more

complex Image processing algorithms on the proposed

system with the integration of OpenCV tool on a

multinode setup of HIPI.

REFERENCES

[1] Shvachko, Konstantin, Hairong Kuang, Sanjay

Radia, and Robert Chansler. "The hadoop distributed file

system." In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pp. 1-10.

IEEE, 2010.

[2] Vemula, Sridhar, and Christopher Crick. "Hadoop

Image Processing Framework." 2015 IEEE International

Congress on Big Data. IEEE, 2015.

[3] Zaharia M, Das T, Li H, et al. (2012) Discretized

streams: an efficient and fault-tolerant model for stream

processing on large clusters. Proc. 4 th Edition.

[4] Apache Storm. https://storm.apache.org/. Accessed

27 Dec 2014.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The google file system. SIGOPS Oper. Syst.

Rev., 37(5):29–43, 2003.

[6] Kune, Raghavendra, et al. "XHAMI--Extended

HDFS and MapReduce Interface for Image Processing

Applications." 2015 IEEE International Conference on

Cloud Computing in Emerging Markets (CCEM). IEEE,

2015.

 Page 53

[7] Sweeney, Chris, et al. "HIPI: a Hadoop image

processing interface for image-based mapreduce tasks."

Chris. University of Virginia (2011).

[8] Shvachko, Konstantin, Hairong Kuang, Sanjay

Radia, and Robert Chansler. "The hadoop distributed file

system." In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pp. 1-10.

IEEE, 2010.

[9] Tom White. Hadoop: The Definitive Guide. O’Reilly

Media, Inc., 3rd edition, 2009.

