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Abstract

Huge amounts of images are uploaded into the internet
daily. As large image collections cannot be processed
efficiently on one computer, image processing often
requires distributed computing. Image processing can
be very computationally demanding due to the large
amount of images to process. Image Processing with
Parallel computing is an alternative way to solve image
processing problems that require large times of
processing or handling large amounts of information
in "acceptable time". The main idea of parallel image
processing is to divide the problem into simple tasks
and solve them concurrently, in such a way the total
time can be divided between the total tasks (in the best
case).

As there is no such distributed framework for
processing of images, HIPI (Hadoop Image Processing
Interface) allows image processing on distributed
framework. Hadoop provides distributed computing
framework for data but not for images. Images cannot
be processed using hadoop, inorder to analyse large
datasets of images, there is an interface for image
processing i.e hadoop image processing
interface(HIPI). HIPI is an interface over the hadoop
file system which helps the users to run various image
processing algorithms and analyse the images on a
distributed framework. Hipi provides such a
mechanism to process huge data sets of images. The
Analysed images are then clustered using the em
clustering algorithm
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INTRODUCTION

Distributed computing is a method of computer
processing in which different parts of a program are run
simultaneously on two or more computers that are
communicating with each other over a network.
Distributed computing is a type of segmented or parallel
computing, but the latter term is most commonly used to
refer to processing in which different parts of a program
run simultaneously on two or more processors that are
part of the same computer. While both types of
processing require that a program be segmented divided
into sections that can run simultaneously, distributed
computing also requires that the division of the program
take into account the different environments on which
the different sections of the program will be running.

A Framework in which large problems can be divided
into many small problems which are distributed to many
computers. Later, the small results are reassembled into a
larger solution. Distributed computing [1] is a natural
result of using networks to enable computers to
communicate efficiently.

Distributed Computing framework is used for creating
and using compute clusters to execute computations in
parallel across multiple processors in a single machine
(SMP) [3-5], among many machines in a cluster, grid or
cloud.

Distributed computing is the process of aggregating the
power of several computing entities, which are logically
distributed and may even be geologically distributed, to
collaboratively run a single computational task in a
transparent and coherent way, so that they appear as a
single, centralized system [2]. Parallel computing is the
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simultaneous execution of the same task on multiple
processors in order to obtain faster results. It is widely
accepted that parallel computing is a branch of
distributed computing, and puts the emphasis on
generating large computing power by employing
multiple processing entities simultaneously for a single
computation task.

These multiple processing entities can be a
multiprocessor system, which consists of multiple
processors in a single machine connected by bus or
switch networks, or a multicomputer system, which
consists ~ of  several independent  computers
interconnected by telecommunication networks or
computer networks. Besides in parallel computing,
distributed computing has also gained significant
development in enterprise computing. The main
difference between enterprise distributed computing and
parallel distributed computing [4] is that the former
mainly targets on integration of distributed resources to
collaboratively finish some task, while the later targets
on utilizing multiple processors simultaneously to finish
a task as fast as possible.

LITERATURE STUDY

Distributed Computing Framework

Distributed computing is a method of computer
processing in which different parts of a program are run
simultaneously on two or more computers that are
communicating with each other over a network.

Distributed computing is a type of segmented or parallel
computing, but the latter term is most commonly used to
refer to processing in which different parts of a program
run simultaneously on two or more processors that are
part of the same computer. While both types of
processing require that a program be segmented divided
into sections that can run simultaneously, distributed
computing also requires that the division of the program
take into account the different environments on which
the different sections of the program will be running.

A Framework in which large problems can be divided
into many small problems that are distributed to many
computers is called distributed framework. Later, the
small results are reassembled into a larger solution.
Distributed computing is a natural result of using
networks to enable computers to communicate
efficiently.

Distributed Computing framework is used for creating
and using compute clusters to execute computations in
parallel across multiple processors in a single machine
(SMP), among many machines in a cluster, grid or cloud.

Apache Hadoop

The Apache Hadoop MapReduce project is a distributed
computing framework that enables developers to write
applications which run reliably on a large number of
unreliable machines with the goal of processing Terabyte
and larger data sets in paralleling clusters consisting of
thousands of nodes [3]. Hadoop is an open source
implementation of the MapReduce framework inspired
by Google MapReduce, and the Google File System
(GFS)[12], although the two systems are very different.
The Hadoop Distributed File System, inspired by GFS
from Google [2], is a distributed filesystem which runs
on low cost commodity hardware in a fault tolerant
manner to redundantly store Terabyte and larger data
sets.

Sacondary Hadoop Distributed File-System (HDFS)
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Hazelcast

Hazelcast[2] is an open source in-memory data grid
based on Java. The Hazelcast[2] company is funded by
venture capital. In a Hazelcast[2] grid, data is evenly
distributed among the nodes of a computer cluster,
allowing for horizontal scaling both in terms of available
storage space and processing power.

JPPF[3] is a distributed parallel processing framework
based on a master/worker architecture. A JPPF grid is
made of 3 sorts of components that communicate with
each other: clients which submit the work to the grid,
nodes which execute the work, and servers which
receive the work from clients and distribute it to the
nodes in parallel.

Apache spark

Apache Spark[7] is an in-memory distributed data
analysis platform that speeds up task processing. It
provides high-level APIs in Java. It also supports a rich
set of higher-level tools, including Shark SQL for SQL
and structured data processing, MLIib for machine
learning, GraphX for graph processing, and Spark
Streaming [8], helping the development of parallel
applications.

HIPI (HADOOP
INTERFACE)

The HIPI Framework:
HIPI[15] is an open-source Hadoop Image Processing
Interface that aims to create an interface for Image
Processing(IP) with Map Reduce technology. HIPI
abstracts the highly technical details of Hadoop’s system
and is flexible enough to implement IP algorithms.

The following goals of HIPI are:

1. HIPI provides an open, extensible library for IP using
Map Reduce technology.

2. With the help of HIPI, images are stored into the
HDFS easily.

3. HIPI allows simple filtering of set of images.

4. Simple and unambiguous interface for IP in hadoop.

5. Enhances parallel processing of images.

IMAGE PROCESSING
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Fig 2.6: HIPI Map Reduce

The following work flow of HIPI is represented as:
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Fig 2.7: HIPI Framework
Data Storage:

A HIPI Image Bundle data type that stores many images
in one large file so that MapReduce jobs can be
performed more efficiently. A HIPI [4] Image Bundle
consists of two files: a data file containing concatenated
images and an index file containing information about
the offsets of images in the data file as shown in the
below fig.
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Fig 2.8: A depiction of the relationship between the
index and data files in a HIPI Image Bundle
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Downloading Images:

The following steps are used for downloading the
images. They are:

1. The list of images should be stored by their image urls
and should be present in a text file with exactly one
image url per line.

2. For parallel execution, the input list of image urls are
split and the number of nodes used to download these
images are specified.

3. Download the images from the internet using the url's.
4. The downloaded images are stored in the image
bundle (HIB).

XHAMI (Extended HDFS and Map Reduce Interface
for Image Processing Applications)

Image processing applications deal with processing of
pixels in parallel, for which Hadoop and MapReduce can
be effectively used to obtain higher throughputs.
XHAMI [4] offers extended library of HDFS [5] and
MapReduce to process the single large scale images with
high level of abstraction over writing and reading the
images. XHAMI [4] has an API to implement Image
processing that is two phase extensions to HDFS and
MapReduce programming model.

Load 05 —, l

l Install ssh package into the o5

Download and install HADOOP 2.6.0 -

Download and install GRADLE 2.13.

set the path for java, hadoop gradle
and hipi
inthe bashre file

Download and install HIPI

T

Fig 3.1: Flowchart of environmental set up of Hadoop,
HIPI,Gradle

ALGORITHM TO COMPUTE GREY LEVEL
HISTOGRAM OF AN IMAGE

Algorithm:

Input: image, no. Of bins

Output: histogram values.

Steps:

1. Read the Input image .

2. Obtain the histogram of the input image by traversing
image pixel data in raster-scan order and update running
average in the bins.

Usage:

Haritha@ Haritha-Vostro-3549:~/work/hipi$ hadoop
jar build/libs/helloWorld.jar tigers.hib histl

ALGORITHM TO COMPUTE MEAN VALUES OF
AN IMAGE

Algorithm:

Input: image

Output: average values.

Steps:

1. Read the Input image.

2. Obtain the mean values of the input image by
averaging image pixel data and update running averages
cumulatively.

Usage:

Haritha@ Haritha -Vostro-3549:~/work/hipi$ hadoop
jar build/libs/helloWorld.jar tigers.hib average

EM CLUSTERING ALGORITHM

The EM algorithm was explained and given its name in a
classic 1977 paper by Arthur Dempster, Nan Laird, and
Donald Rubin. They pointed out that the method had
been "proposed many times in special circumstances"” by
earlier authors. In particular, a very detailed treatment of
the EM method [6] for exponential families was
published by Rolf Sundberg in his thesis and several
papers following his collaboration with Per Martin-Lof
and Anders Martin-Lof.

Algorithm Overview
An expectation—-maximization (EM) algorithm is an
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iterative method for finding maximum likelihood or
maximum a posteriori (MAP) [7] estimates of
parameters in statistical models, where the model
depends on unobserved latent variables. The EM
iteration alternates between performing an expectation
(E) step, which creates a function for the expectation of
the log-likelihood evaluated using the current estimate
for the parameters, and maximization (M) step, which
computes parameters maximizing the expected log-
likelihood found on the E step. These parameter-
estimates are then used to determine the distribution of
the latent variables in the next E step.

EM Clustering

EM is an algorithm for maximizing a likelihood function
when some of the variables in your model are
unobserved (i.e. when you have latent variables).

To maximize a function, why don't we just use the
existing machinery for maximizing a function. Well, if
you try to maximize this by taking derivatives and
setting them to zero, you find that in many cases the
first-order conditions don't have a solution. There's a
chicken-and-egg problem in that to solve for your model
parameters you need to know the distribution of your
unobserved data; but the distribution of your unobserved
data is a function of your model parameters.

E-M tries to get around this by iteratively guessing a
distribution for the unobserved data, then estimating the
model parameters by maximizing something that is a
lower bound on the actual likelihood function, and
repeating until convergence - The EM algorithm Starts
with guess for values of your model parameters.

E-step

For each data point that has missing values, use your
model equation to solve for the distribution of the
missing data given your current guess of the model
parameters and given the observed data (note that you
are solving for a distribution for each missing value, not
for the expected value).

Now that we have a distribution for each missing value,
we can calculate the expectation of the likelihood
function with respect to the unobserved variables. If our
guess for the model parameter was correct, this expected
likelihood will be the actual likelihood of our observed
data; if the parameters were not correct, it will just be a
lower bound.

M-step

Now that we've got an expected likelihood function with
no unobserved variables in it, maximize the function as
you would in the fully observed case, to get a new
estimate of your model parameters.

Repeat until convergence.

Applications

EM is frequently used for data clustering in machine
learning and computer vision. In natural language
processing, two prominent instances of the algorithm are
the Baum-Welch algorithm [8] (also known as forward-
backward) and the inside-outside algorithm for
unsupervised induction of probabilistic context-free
grammars.

In psychometrics, EM is almost indispensable for
estimating item parameters and latent abilities of item
response theory models.

With the ability to deal with missing data and observe
unidentified variables, EM is becoming a useful tool to
price and manage risk of a portfolio [9].

The EM algorithm (and its faster variant Ordered subset
expectation maximization) is also widely used in
medical image reconstruction, especially in positron
emission tomography and single photon emission
computed tomography. See below for other faster
variants of EM.

RESULTS
This chapter shows the results of an image dataset of
1000 images and then the images are clustered based on
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Mean value Results:

Stare @ B e G e | | salguanieeneeeny  The following shows the results of 4 images that are
given as input to the mean algorithm and the mean

Input image in HDFS (Tigers.hib): values of the images are obtained respectively.
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Table 6.2: List of Mean values

image Mean values
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Grey level Histogram Results:

The following shows the results of 4 images that are
given as input to the histogram algorithm and the
histogram values of the images are obtained respectively.

Table 6.1: List of Grey level Histogram values SanS@ MM -0

image Histogram values

EM Clustering

1 2S00 I90L00 6800 755 0850090005 o0nemo 1 e following shows the results of Clustering 1000
images on 10 clusters using EM Clustering algorithm on
a single node.

3 'as&s,no,12434_00,12100.00,7559.00,5671_00,7977,00,8007_00,35120_00,1665_00,45,00,0_00,0_00' The 1000 images are put into a folder on the physical
system

$mkdir /home/bharghavi/Desktop/images

l 2 . 38090.00,14104.00,8136.00,5624.00,3218.00,2950.00,5686.00,427.00,61.00,8.00,0.00,0.00

l 4 .11801.00‘22788.00,1l363.00,10993.00,20241.00,5418.00,]l950.00,2812.00,865.00,67.00,6_00,6.00l
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Conclusion

HIPI is an image processing map-reduce framework that
is designed to hide the complex details of Hadoop’s
powerful Map-reduce framework for processing the
images. HIPI provides a format for storing images for
efficient access within the Map Reduce pipeline, and
simple methods for creating and storing image files of
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the float type and is stored in the form of HIB. HIPI
interface brings about a new level of simplicity for
creating large-scale vision applications that use the map-
reduce framework for the processing of images. The
features of the images are extracted by HIPI framework
and given to the EM clustering algorithm in Hadoop for
clustering.

Future Work

The future work includes implementation of more
complex Image processing algorithms on the proposed
system with the integration of OpenCV tool on a
multinode setup of HIPI.
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