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Abstract 

Huge amounts of images are uploaded into the internet 

daily. As large image collections cannot be processed 

efficiently on one computer, image processing often 

requires distributed computing. Image processing can 

be very computationally demanding due to the large 

amount of images to process. Image Processing with 

Parallel computing is an alternative way to solve image 

processing problems that require large times of 

processing or handling large amounts of information 

in "acceptable time". The main idea of parallel image 

processing is to divide the problem into simple tasks 

and solve them concurrently, in such a way the total 

time can be divided between the total tasks (in the best 

case). 

 

As there is no such distributed framework for 

processing of images, HIPI (Hadoop Image Processing 

Interface) allows image processing on distributed 

framework. Hadoop provides distributed computing 

framework for data but not for images. Images cannot 

be processed using hadoop, inorder to analyse large 

datasets of images, there is an interface for image 

processing i.e hadoop image processing 

interface(HIPI).  HIPI is an interface over the hadoop 

file system which helps the users to run various image 

processing algorithms and analyse the images on a 

distributed framework. Hipi provides such a 

mechanism to process huge data sets of images. The 

Analysed images are then clustered using the em 

clustering algorithm 
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Distributed Computing, HIPI 

 

INTRODUCTION 

Distributed computing is a method of computer 

processing in which different parts of a program are run 

simultaneously on two or more computers that are 

communicating with each other over a network. 

Distributed computing is a type of segmented or parallel 

computing, but the latter term is most commonly used to 

refer to processing in which different parts of a program 

run simultaneously on two or more processors that are 

part of the same computer. While both types of 

processing require that a program be segmented divided 

into sections that can run simultaneously, distributed 

computing also requires that the division of the program 

take into account the different environments on which 

the different sections of the program will be running. 

 

A Framework in which large problems can be divided 

into many small problems which are distributed to many 

computers. Later, the small results are reassembled into a 

larger solution. Distributed computing [1] is a natural 

result of using networks to enable computers to 

communicate efficiently. 

 

Distributed Computing framework is used for creating 

and using compute clusters to execute computations in 

parallel across multiple processors in a single machine 

(SMP) [3-5], among many machines in a cluster, grid or 

cloud. 

 

Distributed computing is the process of aggregating the 

power of several computing entities, which are logically 

distributed and may even be geologically distributed, to 

collaboratively run a single computational task in a 

transparent and coherent way, so that they appear as a 

single, centralized system [2]. Parallel computing is the 
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simultaneous execution of the same task on multiple 

processors in order to obtain faster results. It is widely 

accepted that parallel computing is a branch of 

distributed computing, and puts the emphasis on 

generating large computing power by employing 

multiple processing entities simultaneously for a single 

computation task. 

 

These multiple processing entities can be a 

multiprocessor system, which consists of multiple 

processors in a single machine connected by bus or 

switch networks, or a multicomputer system, which 

consists of several independent computers 

interconnected by telecommunication networks or 

computer networks. Besides in parallel computing, 

distributed computing has also gained significant 

development in enterprise computing. The main 

difference between enterprise distributed computing and 

parallel distributed computing [4] is that the former 

mainly targets on integration of distributed resources to 

collaboratively finish some task, while the later targets 

on utilizing multiple processors simultaneously to finish 

a task as fast as possible. 

 

LITERATURE STUDY 

Distributed Computing Framework 

Distributed computing is a method of computer 

processing in which different parts of a program are run 

simultaneously on two or more computers that are 

communicating with each other over a network.  

 

Distributed computing is a type of segmented or parallel 

computing, but the latter term is most commonly used to 

refer to processing in which different parts of a program 

run simultaneously on two or more processors that are 

part of the same computer. While both types of 

processing require that a program be segmented divided 

into sections that can run simultaneously, distributed 

computing also requires that the division of the program 

take into account the different environments on which 

the different sections of the program will be running. 

 

A Framework in which large problems can be divided 

into many small problems that are distributed to many 

computers is called distributed framework. Later, the 

small results are reassembled into a larger solution. 

Distributed computing is a natural result of using 

networks to enable computers to communicate 

efficiently. 

 

Distributed Computing framework is used for creating 

and using compute clusters to execute computations in 

parallel across multiple processors in a single machine 

(SMP), among many machines in a cluster, grid or cloud. 

 

Apache Hadoop 

The Apache Hadoop MapReduce project is a distributed 

computing framework that enables developers to write 

applications which run reliably on a large number of 

unreliable machines with the goal of processing Terabyte 

and larger data sets in paralleling clusters consisting of 

thousands of nodes [3]. Hadoop is an open source 

implementation of the MapReduce framework inspired 

by Google MapReduce, and the Google File System 

(GFS)[12], although the two systems are very different. 

The Hadoop Distributed File System, inspired by GFS 

from Google [2], is a distributed filesystem which runs 

on low cost commodity hardware in a fault tolerant 

manner to redundantly store Terabyte and larger data 

sets. 
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Hazelcast 

Hazelcast[2] is an open source in-memory data grid 

based on Java. The Hazelcast[2] company is funded by 

venture capital. In a Hazelcast[2] grid, data is evenly 

distributed among the nodes of a computer cluster, 

allowing for horizontal scaling both in terms of available 

storage space and processing power. 

 

JPPF[3] is a distributed parallel processing framework 

based on a master/worker architecture. A JPPF grid is 

made of 3 sorts of components that communicate with 

each other: clients which submit the work to the grid, 

nodes which execute the work, and servers which 

receive the work from clients and distribute it to the 

nodes in parallel. 

 

Apache spark 

Apache Spark[7] is an in-memory distributed data 

analysis platform that speeds up task processing. It 

provides high-level APIs in Java. It also supports a rich 

set of higher-level tools, including Shark SQL for SQL 

and structured data processing, MLlib for machine 

learning, GraphX for graph processing, and Spark 

Streaming [8], helping the development of parallel 

applications. 

 

HIPI (HADOOP IMAGE PROCESSING 

INTERFACE) 

The HIPI Framework: 

HIPI[15] is an open-source Hadoop Image Processing 

Interface that aims to create an interface for Image 

Processing(IP) with Map Reduce technology. HIPI 

abstracts the highly technical details of Hadoop’s system 

and is flexible enough to implement IP algorithms. 

The following goals of HIPI are: 

1. HIPI provides an open, extensible library for IP using 

Map Reduce technology. 

2. With the help of HIPI, images are stored into the 

HDFS easily. 

3. HIPI allows simple filtering of set of images. 

4. Simple and unambiguous interface for IP in hadoop. 

5. Enhances parallel processing of images. 

 
Fig 2.6: HIPI Map Reduce 

 

The following work flow of HIPI is represented as: 

 
Fig 2.7: HIPI Framework 

 

Data Storage: 

A  HIPI Image Bundle data type that stores many images 

in one large file so that MapReduce jobs can be 

performed more efficiently. A HIPI [4] Image Bundle 

consists of two files: a data file containing concatenated 

images and an index file containing information about 

the offsets of images in the data file as shown in the 

below fig. 

 
Fig 2.8: A depiction of the relationship between the 

index and data files in a HIPI Image Bundle 
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Downloading Images: 

The following steps are used for downloading the 

images. They are: 

1. The list of images should be stored by their image urls 

and should be present in a text file with exactly one 

image url per line. 

2. For parallel execution, the input list of image urls are 

split and the number of nodes used to download these 

images are specified. 

3. Download the images from the internet using the url's. 

4. The downloaded images are stored in the image 

bundle (HIB). 

 

XHAMI (Extended HDFS and Map Reduce Interface 

for Image Processing Applications) 

Image processing applications deal with processing of 

pixels in parallel, for which Hadoop and MapReduce can 

be effectively used to obtain higher throughputs. 

XHAMI [4] offers extended library of HDFS [5] and 

MapReduce to process the single large scale images with 

high level of abstraction over writing and reading the 

images. XHAMI [4] has an API to implement Image 

processing that is two phase extensions to HDFS and 

MapReduce programming model. 

 
Fig 3.1: Flowchart of environmental set up of Hadoop, 

HIPI,Gradle 

 

ALGORITHM TO COMPUTE GREY LEVEL 

HISTOGRAM OF AN  IMAGE 

Algorithm: 

Input: image, no. Of bins 

Output: histogram values. 

Steps: 

1. Read the Input image . 

2. Obtain the histogram of the input image by traversing 

image pixel data in raster-scan order and update running 

average in the bins. 

Usage: 

Haritha@ Haritha-Vostro-3549:~/work/hipi$ hadoop 

jar build/libs/helloWorld.jar tigers.hib hist1 

 

ALGORITHM TO COMPUTE MEAN VALUES OF 

AN IMAGE 

Algorithm: 

Input: image 

Output: average values. 

 

Steps: 

1. Read the Input image. 

2. Obtain the mean values of the input image by 

averaging image pixel data and update running averages 

cumulatively. 

Usage: 

Haritha@ Haritha -Vostro-3549:~/work/hipi$ hadoop 

jar build/libs/helloWorld.jar tigers.hib average  

 

EM CLUSTERING ALGORITHM 

The EM algorithm was explained and given its name in a 

classic 1977 paper by Arthur Dempster, Nan Laird, and 

Donald Rubin. They pointed out that the method had 

been "proposed many times in special circumstances" by 

earlier authors. In particular, a very detailed treatment of 

the EM method [6] for exponential families was 

published by Rolf Sundberg in his thesis and several 

papers following his collaboration with Per Martin-Löf 

and Anders Martin-Löf. 

 

Algorithm Overview 

An expectation–maximization (EM) algorithm is an 
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iterative method for finding maximum likelihood or 

maximum a posteriori (MAP) [7] estimates of 

parameters in statistical models, where the model 

depends on unobserved latent variables. The EM 

iteration alternates between performing an expectation 

(E) step, which creates a function for the expectation of 

the log-likelihood evaluated using the current estimate 

for the parameters, and maximization (M) step, which 

computes parameters maximizing the expected log-

likelihood found on the E step. These parameter-

estimates are then used to determine the distribution of 

the latent variables in the next E step. 

 

EM Clustering 

EM is an algorithm for maximizing a likelihood function 

when some of the variables in your model are 

unobserved (i.e. when you have latent variables). 

 

To maximize a function, why don't we just use the 

existing machinery for maximizing a function. Well, if 

you try to maximize this by taking derivatives and 

setting them to zero, you find that in many cases the 

first-order conditions don't have a solution. There's a 

chicken-and-egg problem in that to solve for your model 

parameters you need to know the distribution of your 

unobserved data; but the distribution of your unobserved 

data is a function of your model parameters. 

 

E-M tries to get around this by iteratively guessing a 

distribution for the unobserved data, then estimating the 

model parameters by maximizing something that is a 

lower bound on the actual likelihood function, and 

repeating until convergence - The EM algorithm Starts 

with guess for values of your model parameters. 

 

E-step 

For each data point that has missing values, use your 

model equation to solve for the distribution of the 

missing data given your current guess of the model 

parameters and given the observed data (note that you 

are solving for a distribution for each missing value, not 

for the expected value).  

Now that we have a distribution for each missing value, 

we can calculate the expectation of the likelihood 

function with respect to the unobserved variables. If our 

guess for the model parameter was correct, this expected 

likelihood will be the actual likelihood of our observed 

data; if the parameters were not correct, it will just be a 

lower bound. 

 

M-step  

Now that we've got an expected likelihood function with 

no unobserved variables in it, maximize the function as 

you would in the fully observed case, to get a new 

estimate of your model parameters. 

Repeat until convergence. 

 

Applications 

EM is frequently used for data clustering in machine 

learning and computer vision. In natural language 

processing, two prominent instances of the algorithm are 

the Baum-Welch algorithm [8] (also known as forward-

backward) and the inside-outside algorithm for 

unsupervised induction of probabilistic context-free 

grammars. 

 

In psychometrics, EM is almost indispensable for 

estimating item parameters and latent abilities of item 

response theory models. 

 

With the ability to deal with missing data and observe 

unidentified variables, EM is becoming a useful tool to 

price and manage risk of a portfolio [9]. 

 

The EM algorithm (and its faster variant Ordered subset 

expectation maximization) is also widely used in 

medical image reconstruction, especially in positron 

emission tomography and single photon emission 

computed tomography. See below for other faster 

variants of EM. 

 

RESULTS 

This chapter shows the results of an image dataset of 

1000 images and then the images are clustered based on 
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their grey level histogram. 

Input image folder (Tigers): 

 
 

Input image in HDFS (Tigers.hib): 

 
 

Grey level Histogram Results: 

The following shows the results of 4 images that are 

given as input to the histogram algorithm and the 

histogram values of the images are obtained respectively. 

 

Table 6.1: List of Grey level Histogram values 

 

 
 

Mean value Results: 

The following shows the results of 4 images that are 

given as input to the mean algorithm and the mean 

values of the images are obtained respectively. 

 

Table 6.2: List of Mean values 

 
 

 
 

EM Clustering 

The following shows the results of Clustering 1000 

images on 10 clusters using EM Clustering algorithm on 

a single node. 

The 1000 images are put into a folder on the physical 

system 

$mkdir /home/bharghavi/Desktop/images 
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These 1000 images are saved into the hdfs as 

images.hib. The screen shot is given below: 

 
 

Conclusion 

HIPI is an image processing map-reduce framework that 

is designed to hide the complex details of Hadoop’s 

powerful Map-reduce framework for processing the 

images. HIPI provides a format for storing images for 

efficient access within the Map Reduce pipeline, and 

simple methods for creating and storing image files of 

the float type and is stored in the form of HIB. HIPI 

interface brings about a new level of simplicity for 

creating large-scale vision applications that use the map-

reduce framework for the processing of images. The 

features of the images are extracted by HIPI framework 

and given to the EM clustering algorithm in Hadoop for 

clustering. 

 

Future Work 

The future work includes implementation of more 

complex Image processing algorithms on the proposed 

system with the integration of OpenCV tool on a 

multinode setup of HIPI. 
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