

 Page 1

Efficient Pattern Based Aggregation on Sequence Data

Gorle Rohit

Department Computer Science and

Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh

- 530045, India.

Panuganti Mahendra Amaranth

Department Computer Science and

Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh

- 530045, India.

Nirman Jajjari

Department Computer Science and

Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh

- 530045, India.

Abstract:

A Sequence OLAP (S-OLAP) system provides a

platform on which pattern-based aggregate (PBA)

queries on a sequence database are evaluated. In its

simplest form, a PBA query consists of a pattern

template T and an aggregate function F. A pattern

template is a sequence of variables, each is defined

over a domain. Each variable is instantiated with all

possible values in its corresponding domain to derive

all possible patterns of the template. Sequences are

grouped based on the patterns they possess. The

answer to a PBA query is a sequence cuboid (s-cuboid),

which is a multidimensional array of cells. Each cell is

associated with a pattern instantiated from the query’s

pattern template. The value of each s-cuboid cell is

obtained by applying the aggregate function F to the

set of data sequences that belong to that cell. Since a

pattern template can involve many variables and can be

arbitrarily long, the induced s-cuboid for a PBA query

can be huge. For most analytical tasks, however, only

iceberg cells with very large aggregate values are of

interest. This paper proposes an efficient approach to

identifying and evaluating iceberg cells of s-cuboids.

Experimental results show that our algorithms are

orders of magnitude faster than existing approaches.

INTRODUCTION

Sequence data is ubiquitous. Examples include

workflow data, data streams and RFID logs. Techniques

for processing various kinds of sequence data have been

studied extensively in the literature (e.g., [12, 13, 10, 1,

3, 14]). Recently, issues related to ware- housing and

online analytical processing (OLAP) of archived

sequence data (e.g., stock ticks archive, passenger

traveling histories) have received growing attentions [7,

6, 9]. In particular, [9] developed a sequence OLAP

system (called S-OLAP) that efficiently supports various

kinds of pattern-based aggregate queries.

While traditional OLAP systems group data tuples based

on their attribute values, an S-OLAP system groups

sequences based on the patterns they possess. Common

aggregate functions such as COUNT/SUM/AVG can

then be applied to each group. The result- ing aggregate

values form the cells of a so-called sequence data

cuboid, or s-cuboid.

Since an s-cuboid displays the aggregate values of

sequences that are grouped by the patterns they possess,

one can view an s-cuboid as the answer to a pattern-

based aggregate (PBA) query. To illustrate PBA queries

and s-cuboids, let us consider the sequence data set

shown in Figure 1. The dataset models a collection of

passenger traveling records registered by the

Washington DC‟s metro system. The records are

captured electronically by SmarTrip, which is an RFID-

card-based stored-value e-payment system.

Each row in Figure 1 shows a sequence of passenger

events. An event consists of a number of attributes, such

as Time, Station, Action and Amount. For example, the

event [t9; Wheaton; exit; 1.9] of passenger s623

indicates that the passenger exited Wheaton Station at

time t9 and paid $1.9 for the trip.

Cite this article as: Gorle Rohit, Panuganti Mahendra Amaranth &

Nirman Jajjari, "Efficient Pattern Based Aggregation on Sequence

Data", International Journal of Research in Advanced Computer

Science Engineering, Volume 3 Issue 9, 2018, Page 1-7.

 Page 2

Figure 1: An example sequence data set —

Passenger traveling log of Washington DC’s

metro

Figure 2: A PBA query and its s-cuboid

Figure 2 shows a PBA query “(X, Y, Y, X), COUNT”

and a few cells of the resulting s-cuboid. A PBA query

“T , F ” consists of two components: A pattern template

T (e.g., (X, Y, Y, X)) and an aggregate function F (e.g.,

COUNT). A pattern template is a sequence of pattern

symbols (e.g., X, Y) defined over an attribute of event

records. The pattern symbols are instantiated by the

values of to generate various patterns. Data sequences

are grouped based on the patterns. Finally, the function F

is applied to each sequence group to derive aggregate

values.

For example, the pattern template (X, Y, Y, X) defined

on the Station attribute specifies that passenger

sequences are grouped together if they have traveled

round-trip between stations X and Y (i.e., he first entered

station X and exited station Y in his first trip, and then

entered station Y and come back to station X in the

next). The symbols X and Y are instantiated with various

station names to form patterns, such as (Clarendon,

Pentagon, Pentagon, Clarendon). Data sequences that

possess a given pattern are grouped into a cell1. Each

data sequence gives a value (or measure) to be

aggregated. For example, a passenger sequence could be

associated with the amount of fare paid, or simply „1‟ if

we only care about the cardinality of a cell. The

aggregate function F is then applied to the values of the

sequences of each cell to obtain an aggregate value of

the cell. In this paper we use C(P) to denote the cell of a

pattern P (i.e., C(P) = the set of sequences containing

pattern P), and we use F (C(P)) to denote the aggregate

value of the cell. For example, Figure 2 shows that there

are 16,289 sequences that possess the pattern

(Clarendon, Pentagon, Pentagon, Clarendon). In our

notation: COUNT(C((Clarendon, Pentagon, Pentagon,

Clarendon))) = 16,289. We write P T if pattern P is

an instantiation of the template T . (e.g., (Clarendon,

Pentagon, Pentagon, Clarendon) (X, Y, Y, X)). An s-

cuboid consists of all the aggregate values of the cells

derived from all possible instantiations of the pattern

template. A PBA query (e.g., “(X, Y, Y, X), COUNT”)

is evaluated by computing all the cells of the

corresponding s-cuboid (e.g., all the cells and their

counts listed in Figure 2).

In [9], a basic implementation of an S-OLAP system is

presented. In that study, data sequences were indexed by

inverted lists. Given a pattern P , its inverted list L[P] is

a list of sequence id‟s such that each sequence s listed in

L[P] contains the pattern P . An s-cuboid cell C(P) can

thus be represented by the inverted list L[P]. The

inverted list of a pattern P can be obtained by either (1)

scanning the data sequences and checking which

sequences contain P , or (2) joining the lists of P ‟s sub-

patterns. For example, con- sider the query pattern

template (X, Y, Z, X). To materialize an s-cuboid cell,

say, C((a, b, c, a)), one can intersect (or “join”) the

inverted lists L[(a, b, c)] and L[(c, a)] (if these lists are

available). This is because a sequence that contains the

pattern (a, b, c, a) must contain the sub-patterns (a, b, c)

and (c, a).

In some cases, the computation of a full s-cuboid could

be ex- pensive. This is especially true when the pattern

template is long with many pattern symbols, which

results in a high-dimensional s- cuboid with large

numbers of cells. We note that in many cases, computing

the full s-cuboid is not necessary. More often, a user is

 Page 3

interested in only those cells of an s-cuboid that return

very large aggregate values. For example, a marketing

manager of the Metro company may be interested in the

pairs of stations for which most people commute

roundtrip in order to design a fare and discount structure

strategically. As another example, an online store man-

ager may want to know what products X, Y , Z give high

visiting counts of the product webpage visiting pattern

(X, Y, Z, X). This pattern reveals that a customer

interested in product X is likely to compare it against

products Y and Z, but will eventually commit to X [2-8].

Given a pattern template T , an aggregate function F ,

and a user- specified threshold σ, our objective is to

compute the iceberg cells, which are those whose

aggregate values exceed the threshold σ.

We call the query “T , F , σ” an Iceberg Pattern-Based

Aggregate Query (or IPBA query). Formally,

DEFINITION 1. (IPBA Query) The answer to the

IPBA query “T , F , σ” is the set of all iceberg cells and

their aggregate values, i.e., {(P, F (C(P))) | (P € T) ∧ (F

(C(P)) ≥ σ)}.

One straightforward way to answer an IPBA query is to

compute the full s-cuboid of the PBA query and return

only the iceberg cells. In [9], two methods for computing

full s-cuboids, namely, the counter-based method (CB)

and the inverted-list method (II), are studied. The CB

method scans the relevant sequences in the database to

compute the cells‟ aggregate values in batch, while the II

method computes the s-cuboid using list joining. Both of

these methods could be expensive for very large

sequence databases. For example, computing an inverted

list requires I/O (to retrieve sub-patterns‟ inverted lists)

and CPU processing (to join the sub- patterns‟ lists) [10].

Yet, most of these costs are wasted since the majority of

cells are non-iceberg ones. In this paper, we propose

statistical estimation techniques that allow very efficient

identification and computation of iceberg cells. Our idea

is to retain a very small synopsis of the database in main

memory. Through statistical tests, the synopsis allows us

to decide whether a cell is iceberg or not and whether the

decision meets a given significance level requirement.

For the identified iceberg cells, we estimate their

aggregate values based on the small synopsis and check

whether the estimated values satisfy an accuracy

requirement with a high confidence requirement.

Through this mechanism, we show that we are highly

confident that the reported cells are all and only iceberg

cells and their reported aggregate values are highly

accurate. We remark that our approach results in a very

efficient method of answering IPBA queries. This is

because we avoid heavy I/O (by not accessing disk-

resident data) and reduce CPU processing [3] (by

processing the small synopsis instead of scanning big

data sequences or joining large inverted lists).

EXISTING SYSTEM:

The algorithms thus perform disk-based list-joining to

compute the exact counts of those few cells. The exact

number of cells that require such disk-based joining

depends on how many cells whose counts are close to

the threshold. It thus varies from case to case.

The curves for thus go up and down. However, in

general, for a skewed dataset (such that a few cells have

high populations and most cells have low populations)

there are more cells with low counts. So when decreases,

the chances of having some cells close to the threshold σ

increase.

DISADVANTAGE:

A big advantage of using the sampling technique given

in is that it allows very efficient updates (inserts and

deletes of sequences). For example, consider that a set D

of sequences is inserted into the sequence database.

The system architecture of our S-OLAP implementation

for answering IPBA queries. A general SOLAP system

should be able to answer general PBA queries and to

support a set of S-OLAP operations.

 Page 4

PROPOSED SYSTEM:

In that preliminary version, we proposed a system

architecture and a synopsis based algorithm (SBA) [11]

to answer IPBA queries [14]. The core idea is to retain a

very small synopsis of the database in main memory.

Through statistical tests, the synopsis allows us to decide

whether a cell is iceberg or not for a given significance

level θ. For each potential iceberg cell, we estimate its

aggregate value based on the synopsis and check

whether the estimate is accurate to within a small error

tolerance threshold with a confidence exceeding a

confidence threshold

ADVANTAGE

The theorems also allow us to estimate a synopsis size

with which a given accuracy requirement is guaranteed

to be satisfied. From this observation, we devised two

algorithms, namely, SBA and SBA+. While both are

orders of magnitude more efficient than previous

approaches, SBA+ has the advantage of reducing I/O

and CPU costs in cases where the accuracy test cannot

be satisfied by some iceberg cells.

Also, SBA+ estimates a synopsis size that is sufficient to

guarantee accuracy. Through this estimate, SBA+ avoids

excessive synopsis processing when the synopsis is set

too large. Overall, SBA+ provides the better

performance compared with SBA [14].

SYSTEM ARCHITECTURE

Figure 4 shows the system architecture of our S-OLAP

implementation for answering IPBA queries. We remark

that a general S-OLAP system should also be able to

answer general PBA queries and to support a set of S-

OLAP operations3 [2]. Since we focus on evaluating

IPBA queries in this paper, only components that are

relevant to IPBA query processing are shown in Figure

4.

In our system, a set of data sequences S is stored on

secondary storage. As the S-OLAP system operates and

answers queries (PBA or IPBA), certain inverted indices

and inverted lists are materialized. These materialized

indices (lists) are stored in an inverted index store (II

store). The II store serves as a disk-resident cache of the

previously materialized lists. A replacement policy is

employed by the system to control the II store‟s content

when the II store overflows4. To compute an s-cuboid

cell C(P) (for example, in answering a PBA/IPBA

query), the query engine could consult the II store and

check if the inverted list L[P] is present (i.e.,

materialized). If so, L[P] could be retrieved for

computing the aggregate value F (C(P)). If L[P] is not

present in the II store, it is materialized by joining the

lists of P ‟s sub-patterns. These sub- patterns‟ lists are

retrieved from the II store if they are present, or are

recursively constructed otherwise. We assume that the

indices of all length-2 pattern templates are materialized

in the II store. We call this set of inverted indices the

core index CI, which is always present in the II store.

This approach is similar to bigram indexing in document

retrieval systems and is shown to be effective in PBA

query processing [9].

To speed up IPBA query processing, we should avoid

disk accesses, such as in retrieving lists from the II store.

We achieve this by maintaining a synopsis S˜ in main

memory, which is a small sample of the sequence

dataset S. Accompanying S˜ is the synop- sis‟ II store

(SII store), also stored in main memory. The SII store is

similar to the disk-resident II store except that inverted

lists in the SII store contain the id‟s of only those

sequences found in the synopsis S˜. We use L˜[P] to

denote such a list of the pattern P .

In other words, a posting (si : p1, . . . , pfi) is in L˜[P]

iff the sequence si contains P at starting positions p1, . .

., pfi and si S˜. Moreover, while the core index CI of

the dataset S must be present in the disk-resident II store,

we do not assume the presence of any particular inverted

lists in the SII store. The SII store is simply a fixed-size

temporary cache of previously materialized inverted lists

of the sequences in the synopsis.

 Page 5

Given an IPBA query “T , F , σ”, for each P T , we

estimate the aggregate value F (C(P)) by processing the

synopsis and the SII store. Our objectives are:

1. Derive statistical tests that decide whether C(P) is or

is not an iceberg cell. The decision of the tests has to

satisfy a significance level threshold θ.

2. For each cell C(P) declared iceberg by the tests, we

estimate F (C(P)). The estimate has to be accurate to

within an error tolerance threshold g and the estimation

has to exceed a confidence threshold α.

We remark that (θ, g, α) could be system-wise

parameters or could be specified by the user of each

IPBA query. We call = (σ, θ, g, α) the statistical

requirement of an IPBA query. An interesting feature of

our system is that given , we can mathematically

determine how big S˜ should be in order to meet the

requirement. This information is very useful in designing

the S-OLAP system because it allows us to decide how

much memory the system needs to store an effective

synopsis.

Figure 4: Architecture

IPBA QUERY EVALUATION

In this section we first discuss how to obtain a random

sample S˜ from the sequence dataset S. Next, we

describe our synopsis- based algorithm (SBA), which

answers IPBA queries with results that satisfy the

queries‟ statistical requirements R‟s.

Sampling

We obtain the synopsis S˜ by drawing uniform random

samples from S. Given an amount of memory for storing

the synopsis, we determine a budget B, which is the

number of sequences in the synopsis that the memory

can hold. For example, if 100 million sequences occupy

250GB of disk space, then 500MB of memory for the

synopsis gives a budget B of 200,000 sequences. We

adopt the sampling technique proposed in [8] to obtain

S˜. First, we randomly pick a hash function h : S ›→ [0,

1] from a family of universal hash functions H. Let {s1, .

. . , s|S|} be the set of all data sequence id‟s. The hash

values, h(s1), . . . , h(s|S|), form an i.i.d. sequence of the

uniform distribution over the range [0,1]. To obtain a

size-B sample of S, we collect into S˜ all sequences in S

whose ids‟ hash values are ≤ x, where x = B/|S|. That is,

S˜ = {si ∈ S|h(si) ≤ x}. By expectation, |S˜| = B and so x

= |S˜|/|S|.

The SBA Algorithm

Given an IPBA query “T , F , σ” and its statistical

requirement R = (σ, θ, g, α), our algorithm, SBA, needs

to return the aggregate values of the iceberg cells of an s-

cuboid. Also, the reported results should satisfy R.

Given a pattern P € T , SBA uses L˜[P], which is the

inverted list of P for the synopsis S˜, to decide if the

cell C(P) is iceberg and if so, to compute the cell‟s

aggregate value F (C(P)). In this process, SBA accesses

the SII store (Figure 4) to retrieve L˜[P]. For those

cells C(P)‟s whose lists L˜[P]‟s are not found in the SII

store, the small synopsis S˜ is scanned once to build the

missing L˜[P]‟s. In the following discussion, we

assume that L˜[P] has been made available (either by

retrieval from the SII store or by construction from S˜).

To simplify our discussion, we only consider the

COUNT aggregate function in this paper. Other

functions, such as SUM and AVG, can be similarly

handled [12].

Let DP be the count of the cell C(P), i.e., DP = L[P] .

SBA computes an estimate D˜P of DP based on L˜[P

]. SBA then con- ducts three tests to evaluate if the cell

 Page 6

C(P) is iceberg, and if so, whether the estimate D˜P is

accurate enough. Figure 5 abstracts SBA‟s logic. It

involves the following steps: (1) Test if we can reject the

hypothesis “H1: C(P) is an iceberg cell,” with a

significance level θ. If so, discard the cell. (2) Otherwise,

test if we can reject the hypothesis “H2: C(P) is not an

iceberg cell,” with a significance level θ. If we cannot

reject H2 (and because we failed to reject H1), the

synopsis is insufficient for us to determine if C(P) is

iceberg or not. In this case, SBA computes the exact

count of C(P) by reverting to the disk-based list-joining

algorithm (see Section 2). (3) If H2 is rejected, then

SBA tests if the estimate D˜P satisfies the error bound g

with confidence α. If so, C(P) is reported as an iceberg

cell with count D˜P . If the error tolerance requirement is

not met, SBA again reverts to the disk-based algorithm

to compute the exact count.

Figure 5: Algorithm flowchart

CONCLUSION

In this paper we studied the problem of answering

iceberg pattern- based aggregate (IPBA) queries. We put

forward a synopsis-based solution, which samples and

stores a small synopsis of a sequence database in main

memory. We devised three statistical tests that process

the synopsis to confidently classify a cell as iceberg or

non- iceberg, and to confidently compute aggregate

estimates of the ice- berg cells. Experimental study

shows that our proposed algorithm outperforms the

existing algorithms in order of magnitude.

REFERENCES

[1]B. Babcock, et al. Models and issues in data stream

systems. In PODS, 2002.

[2]K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and

R. Gemulla. On synopses for distinct-value estimation

under multiset operations. In SIGMOD, pages 199–210,

2007.

[3]J. Chen, et al. NiagaraCQ: a scalable continuous

query system for internet databases. SIGMOD Rec.,

2000.

[4]C. K. Chui, B. Kao, E. Lo, and R. Cheng. I/O-

efficient algorithms for answering pattern-based

aggregate queries in a sequence OLAP system. In

CIKM, pages 1619–1628, 2011.

[5]M. Fang, N. Shivakumar, H. Garcia-Molina, R.

Motwani, and J. D. Ullman. Computing iceberg queries

efficiently. In VLDB, pages 299–310, 1998.

[6]H. Gonzalez, J. Han, and X. Li. FlowCube:

Constructing RFID FlowCubes for Multi-Dimensional

Analysis of Commodity Flows. In VLDB, 2006.

[7]H. Gonzalez, J. Han, X. Li, and D. Klabjan.

Warehousing and Analyzing Massive RFID Data Sets.

In ICDE, 2006.

 Page 7

[8]M. Hadjieleftheriou, X. Yu, N. Koudas, and D.

Srivastava. Hashed samples: selectivity estimators for

set similarity selection queries. PVLDB, 1(1):201–212,

2008.

[9]E. Lo, B. Kao, W.-S. Ho, C.-K. Chui, and D. Cheung.

OLAP on sequence data. In SIGMOD, pages 649–660,

2008.

[10]R. Ramakrishnan, D. Donjerkovic, A. Ranganathan,

K. S. Beyer, and M. Krishnaprasad. SRQL: Sorted

Relational Query Language. In SSDBM, 1998.

[11]R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi.

Optimization of sequence queries in database systems. In

PODS, 2001.

[12]P. Seshadri, M. Livny, and R. Ramakrishnan.

Sequence query processing. In SIGMOD, 1994.

[13]P. Seshadri, M. Livny, and R. Ramakrishnan. The

design and implementation of a sequence database

system. In VLDB, 1996.

[14]F. Wang, et al. Temporal management of RFID data.

In VLDB, 2005.

Author Details

Gorle Rohit

Department Computer Science and Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh - 530045, India.

rohit.rohitg17@gmail.com

Panuganti Mahendra Amaranth

Department Computer Science and Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh - 530045, India.

p.amar560@gmail.com

Nirman Jajjari

Department Computer Science and Engineering,

Gitam (Deemed to be University)

Vishakhapatnam, Andhra Pradesh - 530045, India.

nirman1071997@gmail.com

