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Abstract: 

A Sequence OLAP (S-OLAP) system provides a 

platform on which pattern-based aggregate (PBA) 

queries on a sequence database are evaluated. In its 

simplest form, a PBA query consists of a pattern 

template T and an aggregate function F. A pattern 

template is a sequence of variables, each is defined 

over a domain. Each variable is instantiated with all 

possible values in its corresponding domain to derive 

all possible patterns of the template. Sequences are 

grouped based on the patterns they possess. The 

answer to a PBA query is a sequence cuboid (s-cuboid), 

which is a multidimensional array of cells. Each cell is 

associated with a pattern instantiated from the query’s 

pattern template. The value of each s-cuboid cell is 

obtained by applying the aggregate function F to the 

set of data sequences that belong to that cell. Since a 

pattern template can involve many variables and can be 

arbitrarily long, the induced s-cuboid for a PBA query 

can be huge. For most analytical tasks, however, only 

iceberg cells with very large aggregate values are of 

interest. This paper proposes an efficient approach to 

identifying and evaluating iceberg cells of s-cuboids. 

Experimental results show that our algorithms are 

orders of magnitude faster than existing approaches. 

 

INTRODUCTION 

Sequence data is ubiquitous. Examples include 

workflow data, data streams and RFID logs. Techniques 

for processing various kinds of sequence data have been 

studied extensively in the literature (e.g., [12, 13, 10, 1, 

3, 14]). Recently, issues related to ware- housing and 

online analytical processing (OLAP) of archived 

sequence data (e.g., stock ticks archive, passenger 

traveling histories) have received growing attentions [7, 

6, 9]. In particular, [9] developed a sequence OLAP 

system (called S-OLAP) that efficiently supports various 

kinds of pattern-based aggregate queries.  

 

While traditional OLAP systems group data tuples based 

on their attribute values, an S-OLAP system groups 

sequences based on the patterns they possess. Common 

aggregate functions such as COUNT/SUM/AVG can 

then be applied to each group. The result- ing aggregate 

values form the cells of a so-called sequence data 

cuboid, or s-cuboid. 

 

Since an s-cuboid displays the aggregate values of 

sequences that are grouped by the patterns they possess, 

one can view an s-cuboid as the answer to a pattern-

based aggregate (PBA) query. To illustrate PBA queries 

and s-cuboids, let us consider the sequence data set 

shown in Figure 1. The dataset models a collection of 

passenger traveling records registered by the 

Washington DC‟s metro system. The records are 

captured electronically by SmarTrip, which is an RFID-

card-based stored-value e-payment system.  

Each row in Figure 1 shows a sequence of passenger 

events. An event consists of a number of attributes, such 

as Time, Station, Action and Amount. For example, the 

event [t9; Wheaton; exit; 1.9] of passenger s623 

indicates that the passenger exited Wheaton Station at 

time t9 and paid $1.9 for the trip. 
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Figure 1: An example sequence data set — 

Passenger traveling log of Washington DC’s 

metro 

 
Figure 2: A PBA query and its s-cuboid 

 

Figure 2 shows a PBA query “(X, Y, Y, X), COUNT” 

and a few cells of the resulting s-cuboid. A PBA query 

“T , F ” consists of two components: A pattern template 

T (e.g., (X, Y, Y, X)) and an aggregate function F (e.g., 

COUNT). A pattern template is a sequence of pattern 

symbols (e.g., X, Y ) defined over an attribute of event 

records. The pattern symbols are instantiated by the 

values of to generate various patterns. Data sequences 

are grouped based on the patterns. Finally, the function F 

is applied to each sequence group to derive aggregate 

values. 

 

For example, the pattern template (X, Y, Y, X) defined 

on the Station attribute specifies that passenger 

sequences are grouped together if they have traveled 

round-trip between stations X and Y (i.e., he first entered 

station X and exited station Y in his first trip, and then 

entered station Y and come back to station X in the 

next). The symbols X and Y are instantiated with various 

station names to form patterns, such as (Clarendon, 

Pentagon, Pentagon, Clarendon). Data sequences that 

possess a given pattern are grouped into a cell1. Each 

data sequence gives a value (or measure) to be 

aggregated. For example, a passenger sequence could be 

associated with the amount of fare paid, or simply „1‟ if 

we only care about the cardinality of a cell. The 

aggregate function F is then applied to the values of the 

sequences of each cell to obtain an aggregate value of 

the cell. In this paper we use C(P ) to denote the cell of a 

pattern P (i.e., C(P ) = the set of sequences containing 

pattern P ), and we use F (C(P )) to denote the aggregate 

value of the cell. For example, Figure 2 shows that there 

are 16,289 sequences that possess the pattern 

(Clarendon, Pentagon, Pentagon, Clarendon). In our 

notation: COUNT(C((Clarendon, Pentagon, Pentagon, 

Clarendon))) = 16,289. We write P T if pattern P is 

an instantiation of the template T . (e.g., (Clarendon, 

Pentagon, Pentagon, Clarendon) (X, Y, Y, X)). An s-

cuboid consists of all the aggregate values of the cells 

derived from all possible instantiations of the pattern 

template. A PBA query (e.g., “(X, Y, Y, X), COUNT”) 

is evaluated by computing all the cells of the 

corresponding s-cuboid (e.g., all the cells and their 

counts listed in Figure 2). 

 

In [9], a basic implementation of an S-OLAP system is 

presented. In that study, data sequences were indexed by 

inverted lists. Given a pattern P , its inverted list L[P ] is 

a list of sequence id‟s such that each sequence s listed in 

L[P ] contains the pattern P . An s-cuboid cell C(P ) can 

thus be represented by the inverted list L[P ]. The 

inverted list of a pattern P can be obtained by either (1) 

scanning the data sequences and checking which 

sequences contain P , or (2) joining the lists of P ‟s sub-

patterns. For example, con- sider the query pattern 

template (X, Y, Z, X). To materialize an s-cuboid cell, 

say, C((a, b, c, a)), one can intersect (or “join”) the 

inverted lists L[(a, b, c)] and L[(c, a)] (if these lists are 

available). This is because a sequence that contains the 

pattern (a, b, c, a) must contain the sub-patterns (a, b, c) 

and (c, a). 

 

In some cases, the computation of a full s-cuboid could 

be ex- pensive. This is especially true when the pattern 

template is long with many pattern symbols, which 

results in a high-dimensional s- cuboid with large 

numbers of cells. We note that in many cases, computing 

the full s-cuboid is not necessary. More often, a user is 
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interested in only those cells of an s-cuboid that return 

very large aggregate values. For example, a marketing 

manager of the Metro company may be interested in the 

pairs of stations for which most people commute 

roundtrip in order to design a fare and discount structure 

strategically. As another example, an online store man- 

ager may want to know what products X, Y , Z give high 

visiting counts of the product webpage visiting pattern 

(X, Y, Z, X). This pattern reveals that a customer 

interested in product X is likely to compare it against 

products Y and Z, but will eventually commit to X [2-8]. 

 

Given a pattern template T , an aggregate function F , 

and a user- specified threshold σ, our objective is to 

compute the iceberg cells, which are those whose 

aggregate values exceed the threshold σ. 

 

We call the query “T , F , σ” an Iceberg Pattern-Based 

Aggregate Query (or IPBA query). Formally, 

 

DEFINITION 1. (IPBA Query) The answer to the 

IPBA query  “T , F , σ” is the set of all iceberg cells and 

their aggregate values, i.e., {(P, F (C(P ))) | (P € T ) ∧ (F 

(C(P )) ≥ σ)}. 

One straightforward way to answer an IPBA query is to 

compute the full s-cuboid of the PBA query and return 

only the iceberg cells. In [9], two methods for computing 

full s-cuboids, namely, the counter-based method (CB) 

and the inverted-list method (II), are studied. The CB 

method scans the relevant sequences in the database to 

compute the cells‟ aggregate values in batch, while the II 

method computes the s-cuboid using list joining. Both of 

these methods could be expensive for very large 

sequence databases. For example, computing an inverted 

list requires I/O (to retrieve sub-patterns‟ inverted lists) 

and CPU processing (to join the sub- patterns‟ lists) [10]. 

Yet, most of these costs are wasted since the majority of 

cells are non-iceberg ones. In this paper, we propose 

statistical estimation techniques that allow very efficient 

identification and computation of iceberg cells. Our idea 

is to retain a very small synopsis of the database in main 

memory. Through statistical tests, the synopsis allows us 

to decide whether a cell is iceberg or not and whether the 

decision meets a given significance level requirement.  

 

For the identified iceberg cells, we estimate their 

aggregate values based on the small synopsis and check 

whether the estimated values satisfy an accuracy 

requirement with a high confidence requirement. 

Through this mechanism, we show that we are highly 

confident that the reported cells are all and only iceberg 

cells and their reported aggregate values are highly 

accurate. We remark that our approach results in a very 

efficient method of answering IPBA queries. This is 

because we avoid heavy I/O (by not accessing disk- 

resident data) and reduce CPU processing [3] (by 

processing the small synopsis instead of scanning big 

data sequences or joining large inverted lists). 

 

EXISTING SYSTEM: 

The algorithms thus perform disk-based list-joining to 

compute the exact counts of those few cells. The exact 

number of cells that require such disk-based joining 

depends on how many cells whose counts are close to 

the threshold. It thus varies from case to case.  

 

The curves for thus go up and down. However, in 

general, for a skewed dataset (such that a few cells have 

high populations and most cells have low populations) 

there are more cells with low counts. So when decreases, 

the chances of having some cells close to the threshold σ 

increase. 

 

DISADVANTAGE: 

A big advantage of using the sampling technique given 

in is that it allows very efficient updates (inserts and 

deletes of sequences). For example, consider that a set D 

of sequences is inserted into the sequence database. 

 

The system architecture of our S-OLAP implementation 

for answering IPBA queries. A general SOLAP system 

should be able to answer general PBA queries and to 

support a set of S-OLAP operations. 
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PROPOSED SYSTEM: 

In that preliminary version, we proposed a system 

architecture and a synopsis based algorithm (SBA) [11] 

to answer IPBA queries [14]. The core idea is to retain a 

very small synopsis of the database in main memory.  

 

Through statistical tests, the synopsis allows us to decide 

whether a cell is iceberg or not for a given significance 

level θ. For each potential iceberg cell, we estimate its 

aggregate value based on the synopsis and check 

whether the estimate is accurate to within a small error 

tolerance threshold with a confidence exceeding a 

confidence threshold 

 

ADVANTAGE 

The theorems also allow us to estimate a synopsis size 

with which a given accuracy requirement is guaranteed 

to be satisfied. From this observation, we devised two 

algorithms, namely, SBA and SBA+. While both are 

orders of magnitude more efficient than previous 

approaches, SBA+ has the advantage of reducing I/O 

and CPU costs in cases where the accuracy test cannot 

be satisfied by some iceberg cells.  

 

Also, SBA+ estimates a synopsis size that is sufficient to 

guarantee accuracy. Through this estimate, SBA+ avoids 

excessive synopsis processing when the synopsis is set 

too large. Overall, SBA+ provides the better 

performance compared with SBA [14]. 

 

SYSTEM ARCHITECTURE 

Figure 4 shows the system architecture of our S-OLAP 

implementation for answering IPBA queries. We remark 

that a general S-OLAP system should also be able to 

answer general PBA queries and to support a set of S-

OLAP operations3 [2]. Since we focus on evaluating 

IPBA queries in this paper, only components that are 

relevant to IPBA query processing are shown in Figure 

4. 

 

In our system, a set of data sequences S is stored on 

secondary storage. As the S-OLAP system operates and 

answers queries (PBA or IPBA), certain inverted indices 

and inverted lists are materialized. These materialized 

indices (lists) are stored in an inverted index store (II 

store). The II store serves as a disk-resident cache of the 

previously materialized lists. A replacement policy is 

employed by the system to control the II store‟s content 

when the II store overflows4. To compute an s-cuboid 

cell C(P ) (for example, in answering a PBA/IPBA 

query), the query engine could consult the II store and 

check if the inverted list L[P ] is present (i.e., 

materialized). If so, L[P ] could be retrieved for 

computing the aggregate value F (C(P )).  If L[P ] is not 

present in the II store,  it  is materialized by joining the 

lists of P ‟s sub-patterns. These sub- patterns‟ lists are 

retrieved from the II store if they are present, or are 

recursively constructed otherwise. We assume that the 

indices of all length-2 pattern templates are materialized 

in the II store. We call this set of inverted indices the 

core index CI, which is always present in the II store. 

This approach is similar to bigram indexing in document 

retrieval systems and is shown to be effective in PBA 

query processing [9]. 

 

To speed up IPBA query processing, we should avoid 

disk accesses, such as in retrieving lists from the II store. 

We achieve this by  maintaining  a  synopsis  S˜ in  main  

memory,  which  is  a  small sample of the sequence 

dataset S.  Accompanying S˜ is the synop- sis‟ II store 

(SII store), also stored in main memory. The SII store is 

similar to the disk-resident II store except that inverted 

lists in the SII store contain the id‟s of only those 

sequences found in the synopsis S˜.  We use L˜[P ] to 

denote such a list of the pattern P . 

 

In other words, a posting (si  :  p1, . . . , pfi ) is in L˜[P ] 

iff the sequence si contains P  at starting positions p1, . . 

., pfi  and si      S˜. Moreover, while the core index CI of 

the dataset S must be present in the disk-resident II store, 

we do not assume the presence of any particular inverted 

lists in the SII store. The SII store is simply a fixed-size 

temporary cache of previously materialized inverted lists 

of the sequences in the synopsis. 
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Given an IPBA query “T , F , σ”, for each P T , we 

estimate  the aggregate value F (C(P )) by processing the 

synopsis and the SII store. Our objectives are: 

1. Derive statistical tests that decide whether C(P ) is or 

is not an iceberg cell. The decision of the tests has to 

satisfy a significance level threshold θ. 

2. For each cell C(P ) declared iceberg by the tests, we 

estimate F (C(P )). The estimate has to be accurate to 

within an error tolerance threshold g and the estimation 

has to exceed a confidence threshold α. 

We remark that (θ, g, α) could be system-wise 

parameters or could be specified by the user of each 

IPBA query. We call = (σ, θ, g, α) the statistical 

requirement of an IPBA query. An interesting feature of 

our system is that given , we can mathematically 

determine how big S˜ should be in order to meet the 

requirement. This information is very useful in designing 

the S-OLAP system because it allows us to decide how 

much memory the system needs to store an effective 

synopsis. 

 
Figure 4: Architecture 

 

IPBA QUERY EVALUATION 

In this section we first discuss how to obtain a random 

sample S˜ from the sequence dataset S.  Next, we 

describe our synopsis- based algorithm (SBA), which 

answers IPBA queries with results that satisfy the 

queries‟ statistical requirements R‟s. 

Sampling 

We obtain the synopsis S˜ by drawing uniform random 

samples from S. Given an amount of memory for storing 

the synopsis, we determine a budget B, which is the 

number of sequences in the synopsis that the memory 

can hold. For example, if 100 million sequences occupy 

250GB of disk space, then 500MB of memory for the 

synopsis gives a budget B of 200,000 sequences. We 

adopt the sampling technique proposed in [8] to obtain 

S˜. First, we randomly pick a hash function h : S ›→ [0, 

1] from a family of universal hash functions H. Let {s1, . 

. . , s|S|} be the set of all data sequence id‟s. The hash 

values, h(s1), . . . , h(s|S|), form an i.i.d. sequence of the 

uniform distribution over the range [0,1]. To obtain a 

size-B sample of S, we collect into S˜ all sequences in S 

whose ids‟ hash values are ≤ x, where x = B/|S|. That is, 

S˜ = {si  ∈ S|h(si) ≤ x}. By expectation, |S˜| = B and so x 

= |S˜|/|S|. 

 

The SBA Algorithm 

Given an IPBA query “T ,  F ,  σ” and its statistical 

requirement R = (σ, θ, g, α), our algorithm, SBA, needs 

to return the aggregate values of the iceberg cells of an s-

cuboid. Also, the reported results should satisfy R.  

Given a pattern P  € T , SBA uses L˜[P ], which is the 

inverted list of P  for the synopsis S˜,  to decide if the 

cell C(P ) is iceberg and if so, to compute the cell‟s 

aggregate value F (C(P )). In this process, SBA accesses 

the SII store (Figure 4) to retrieve L˜[P ].   For those 

cells C(P )‟s whose lists L˜[P ]‟s are not found in the SII 

store, the small synopsis S˜ is scanned once to build the 

missing L˜[P ]‟s.  In the following discussion, we 

assume that L˜[P ] has been made available (either by 

retrieval from the SII store or by construction from S˜).  

To simplify our discussion, we only consider the 

COUNT aggregate function in this paper. Other 

functions, such as SUM and AVG, can be similarly 

handled [12]. 

 

Let DP be the count of the cell C(P ), i.e., DP = L[P ] . 

SBA computes an estimate D˜P   of DP   based on L˜[P 

].  SBA then con- ducts three tests to evaluate if the cell 
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C(P ) is iceberg, and if so, whether the estimate D˜P   is 

accurate enough.   Figure 5 abstracts SBA‟s logic. It 

involves the following steps: (1) Test if we can reject the 

hypothesis “H1: C(P ) is an iceberg cell,” with a 

significance level θ. If so, discard the cell. (2) Otherwise, 

test if we can reject the hypothesis “H2: C(P ) is not an 

iceberg cell,”  with a significance level θ. If we cannot 

reject H2 (and because we failed to reject H1), the 

synopsis is insufficient for us to determine if C(P ) is 

iceberg or not. In this case, SBA computes the exact 

count of C(P ) by reverting to the disk-based list-joining 

algorithm (see Section 2). (3) If H2  is rejected, then 

SBA tests if the estimate D˜P   satisfies the error bound g 

with confidence α.  If so, C(P ) is reported as an iceberg 

cell with count D˜P . If the error tolerance requirement is 

not met, SBA again reverts to the disk-based algorithm 

to compute the exact count. 

 
Figure 5: Algorithm flowchart 

 

CONCLUSION 

In this paper we studied the problem of answering 

iceberg pattern- based aggregate (IPBA) queries. We put 

forward a synopsis-based solution, which samples and 

stores a small synopsis of a sequence database in main 

memory. We devised three statistical tests that process 

the synopsis to confidently classify a cell as iceberg or 

non- iceberg, and to confidently compute aggregate 

estimates of the ice- berg cells. Experimental study 

shows that our proposed algorithm outperforms the 

existing algorithms in order of magnitude. 

 

REFERENCES 

[1]B. Babcock, et al. Models and issues in data stream 

systems. In PODS, 2002. 

 

[2]K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and 

R. Gemulla. On synopses for distinct-value estimation 

under multiset operations. In SIGMOD, pages 199–210, 

2007. 

 

[3]J. Chen, et al. NiagaraCQ: a scalable continuous 

query system for internet databases. SIGMOD Rec., 

2000.  

 

[4]C. K. Chui, B. Kao, E. Lo, and R. Cheng. I/O-

efficient algorithms for answering pattern-based 

aggregate queries in a sequence OLAP system. In 

CIKM, pages 1619–1628, 2011.  

 

[5]M. Fang, N. Shivakumar, H. Garcia-Molina, R. 

Motwani, and J. D. Ullman. Computing iceberg queries 

efficiently. In VLDB, pages 299–310, 1998. 

 

[6]H. Gonzalez, J. Han, and X. Li. FlowCube: 

Constructing RFID FlowCubes for Multi-Dimensional 

Analysis of Commodity Flows. In VLDB, 2006. 

 

[7]H. Gonzalez, J. Han, X. Li, and D. Klabjan. 

Warehousing and Analyzing Massive RFID Data Sets. 

In ICDE, 2006. 



 
 

 Page 7 
 

[8]M. Hadjieleftheriou, X. Yu, N. Koudas, and D. 

Srivastava. Hashed samples: selectivity estimators for 

set similarity selection queries. PVLDB, 1(1):201–212, 

2008. 

 

[9]E. Lo, B. Kao, W.-S. Ho, C.-K. Chui, and D. Cheung. 

OLAP on sequence data. In SIGMOD, pages 649–660, 

2008. 

 

[10]R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, 

K. S. Beyer, and M. Krishnaprasad. SRQL: Sorted 

Relational Query Language. In SSDBM, 1998. 

 

[11]R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. 

Optimization of sequence queries in database systems. In 

PODS, 2001. 

 

[12]P. Seshadri, M. Livny, and R. Ramakrishnan. 

Sequence query processing. In SIGMOD, 1994. 

 

[13]P. Seshadri, M. Livny, and R. Ramakrishnan. The 

design and implementation of a sequence database 

system. In VLDB, 1996. 

 

[14]F. Wang, et al. Temporal management of RFID data. 

In VLDB, 2005. 

 

Author Details 

Gorle Rohit 

Department Computer Science and Engineering, 

Gitam (Deemed to be University) 

Vishakhapatnam, Andhra Pradesh - 530045, India. 

rohit.rohitg17@gmail.com 

 

Panuganti Mahendra Amaranth 

Department Computer Science and Engineering, 

Gitam (Deemed to be University) 

Vishakhapatnam, Andhra Pradesh - 530045, India. 

p.amar560@gmail.com 

 

Nirman Jajjari 

Department Computer Science and Engineering, 

Gitam (Deemed to be University) 

Vishakhapatnam, Andhra Pradesh - 530045, India. 

nirman1071997@gmail.com 


