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ABSTRACT 

The (putting into) use of (turning messages into secret 

code)/decryption set of computer instructions is the 

most extremely important part of the secure 

communication. In now existing (turning messages 

into secret code) sets of computer instructions there is a 

trade-off between putting into use cost and resulting 

performances. SEA is an (able to be made bigger or 

smaller) (turning messages into secret code) set of 

computer instructions targeted for small embedded 

computer programs. It was, at first, designed for 

software putting into uses in controllers, smart cards or 

processors. In this letter, we (ask lots of questions 

about/try to find the truth about) its performances in 

recent FPGA devices. For this purpose, a loop (related 

to the beautiful design and construction of buildings, 

etc.) of the block code/puzzle is presented. Beyond its 

low cost performances, a significant advantage of the 

proposed (related to the beautiful design and 

construction of buildings, etc.) is its full flexibility for 

any limit/guideline of the (able to be made bigger or 

smaller) (turning messages into secret code) set of 

computer instructions, taking advantage of plain and 

common thing/not a brand-name drug Verilog HDL 

coding. The letter also carefully describes the putting 

into use details allowing us to keep small area needed 

things. Finally, a (serving to compare two or more 

things) performance discussion of SEA with the 

Advanced (turning messages into secret code) Standard 

Rijndael and ICEBERG(a code/puzzle purposed for 

(producing a lot with very little waste) FPGA putting 

into uses) is proposed. It illustrates the interest of 

(raised, flat supporting surface)/context-oriented block 

calculates/codes design and, as far as SEA is 

concerned, its low area needed things and reasonable 

(wasting very little while working or producing 

something). 

 

I.INTRODUCTION 

Scalable encryption algorithm is targeted for small-

embedded application with limited resources.SEA is a 

parametric block cipher for resource constrained systems 

(e.g. sensor networks, RFIDs) that has been introduced 

in [1]. It was initially designed as a low-cost 

encryption/authentication routine (i.e. with small code 

size and memory) targeted for processors with a limited 

instruction set(i.e. AND, OR, XOR gates, word rotation 

and modular addition).Additionally and contrary to most 

recent block ciphers (e.g.the DES [2] and AES Rijndael 

[3], [4]), the algorithm takes the plaintext, key and the 

bus sizes as parameters and therefore can be 

straightforwardly adapted to various implementation 

contexts and/or security requirements. Compared to 

older solutions for low cost encryption like TEA (Tiny 

Encryption Algorithm) [5] or Yuval’s proposal [6], SEA 

also benefits from a stronger security analysis, derived 

from recent advances in block cipher 

design/cryptanalysis. 

 

In practice, SEA has been proven to be an efficient 

solution for embedded software applications using 

microcontrollers, but its hardware performances have not 

yet been investigated. Consequently, and as a first step 

towards hardware performance analysis, this letter 
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explores the features of a low cost FPGA 

encryption/decryption core for SEA. In addition to the 

performance evaluation, we show that the algorithm’s 

scalability can be turned into a fully generic Verilog 

HDL design, so that any text, key and bus size can be 

straightforwardly re-implemented without any 

modification of the hardware description language, with 

standard synthesis and implementation tools. 

 

In the rest of the letter, we first provide a brief 

description of the algorithm specifications. Then we 

describe the details of our generic loop architecture and 

its implementation results. Finally, we discuss some 

illustrative comparisons of the hardware performances of 

SEA, the AES Rijndael and ICEBERG (a cipher 

purposed for efficient FPGA implementations) with 

respect to their design approach (e.g. flexible vs. 

platform/context-oriented). 

 

II. ALGORITHM DESCRIPTION 

Parameters and definitions 

SEA n,b operates on various text, key and word sizes. It 

is based on a Feistel structure with a variable number of 

rounds, and is defined with respect to the following 

parameters: 

 n: plaintext size, key size. 

 b: processor (or word) size. 

 nb = n/2b : number of words per Feistel branch. 

 nr: number of block cipher rounds. 

 

As only constraint, it is required that n is a multiple of 

6b (see[1] for the details). For example, using an 8-bit 

processor, wecan derive a 96-bit block ciphers, denoted 

as SEA96,8. 

 

Let x be a n/2 -bit vector. We consider two 

representations: 

 Bit representation: xb = x(n/2− 1) . . . x(2) x(1) 

x(0). 

 Word representation: xw = xnb−1 xnb−2 . . . x2 x1 

x0. 

 
Fig. 1. Encrypt/decrypt round and key round. 

 

Basic operations 

Due to its simplicity constraints, SEAn,b is based on 

alimited number of elementary operations (selected for 

theiravailability in any processing device) denoted as 

follows: 

(1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-

bitsubstitution box S := {0, 5, 6, 7, 4, 3, 1, 2} that can be 

appliedbitwise to any set of 3-bit words for efficiency 

purposes. Inaddition, we use the following rotation 

operations:(4) Word rotation R, defined on nb-word 

vectors: 

 
(5) Bit rotation r, defined on nb-word vectors: 

 
where 0 ≤ i ≤nb/3 – 1and >>>and <<<respectively 

representthe cyclic right and left shifts inside a word. 

 

The round and key round 

Based on the previous definitions, the encrypt round 

FE,decrypt round FD and key round FK are pictured in 

Figure 1and defined as: 
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The complete cipher 

The cipher iterates an odd number nr of rounds. 

Thefollowing pseudo-C code encrypts a plaintext P 

under a key Kand produces a ciphertext C. P,C and K 

have a parametricbit size n. The operations within the 

cipher are performedconsidering parametric b-bit words. 

C=SEAn,b(P,K) 

{ 

% initialization: 

L0&R0 = P; 

KL0&KR0 = K; 

% key scheduling: 

 

 
 

 
where & is the concatenation operator, KR⌊nr/2 ⌋is taken 

beforethe switch and C(i) is a nb-word vector of which 

all the wordshave value 0 excepted the LSW that equals 

i. Decryption isexactly the same, using the decrypt round 

FD. 

 

III. IMPLEMENTATION OF A LOOP 

ARCHITECTURE 

A. Description 

The structure of our loop architecture for SEA is 

depictedin figure 2, with the round function on the left 

part and thekey schedule on the right part. Resource-

consuming blocksare the Sboxes and the mod2b adder; 

the Word Rotate andBit Rotate blocks are implemented 

by swapping wires.According to the Specifications, the 

key schedule containstwo multiplexors allowing to 

switch the right and left part ofthe round key at half the 

execution of the algorithm using the appropriate 

command signal Switch. The multiplexorcontrolled by 

HalfExec provides the round function withthe right part 

of the round key for the first half of theexecution and 

transmits its left part instead after the switch. Tosupport 

both encryption and decryption, we finally added 

twomultiplexors controlled by the Encrypt signal. 

Supplementaryarea consumption will be caused by the 

two routing paths. 
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Fig. 2. Loop implementation of SEA. 

 

The algorithm can easily beneficiate of a modular 

implementation,taking as only mandatory parameters the 

size ofthe plaintexts and keys n and the word length b. 

The numberof rounds nr is an optional input that can be 

automaticallyderived from n and b according to the 

guidelines given in [1].From the datapath description of 

Figure 2, a scalable designcan then be straightforwardly 

obtained by using generic Verilog HDLcoding. A 

particular care only has to be devoted to an efficientuse 

of the mod 2
b
 adders in the key scheduling part. 

 

In the round function, the mod 2
b
 adders are realizedby 

using nb b-bits adders working in parallel without 

carrypropagation between them. However, in the key 

schedule, thesignal Const_i (provided by the control 

part) can only takea value between 0 and nr/2  . 

Therefore, it may not be necessaryto use nb adders. If 

log2(nr/2  ) ≤ b, then a single adder issufficient. If 

log2(nr/2 ) > b, then ⌈log2(nr/2 )/2] adders will 

berequired. In the next section, we detail the 

implementationresults of this architecture for different 

parameters. 

B. ENCRYPTION AND DECRYPTION 

FLOWCHART 

Figure.3 shows the encryption flow chart used in design 

of theprogram. The data and key are the inputs. In the 

next step bothinputs are divided into two parts and 

applied to the processingblocks. The encryption is 

completed in two loop operations. Infirst loop i will take 

a value of 1 to nr/2. That is the half executionpart, the 

right part of the key is selected during this 

operations.Both key and data swap in end of each, 

iteration. After finishingthe half execution switch 

operation is performed. It is done byswap left and right 

part of key and the remaining rounds the keypart will not 

swap in the next loop. The same operation isperformed 

in next loop except that the left part key is selected inthe 

round operation. Finally the encrypt output is taken 

byconcatenating right and left part output of encrypt 

round.Figure.4 shows decryption flow chart, the same 

process is doneduring this flowchart except that inverse 

word rotation operationis performed after bit rotation, 

instead in encrypt round the wordrotation is performed 

before bitwise XOR. 
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C. Implementation results 

Implementation results were extracted after place and 

route with the ISE 9.2i tool from Xilinx on a xc4vlx25 

VIRTEX-4 platform with speed grade -12. In order to 

illustrate themodularity of our architecture, we ran the 

design tool fordifferentsets of parameters, with 

plaintext/key sizes n rangingfrom 48 to 144 bits and 

word lengths of 4, 6, 7, 8, and 12bits. For the control 

part, we used the recommended number ofrounds 

 
The computed implementationcosts stand for both the 

operative and control parts.A summary of these results is 

presented in table I, wherethe area requirements (in 

slices), the work frequency andthe throughput are 

provided. We observe that the obtainedvalues for the 

work frequency are very close for alltheimplementations. 

Indeed, the critical path (passing throughthe key 

scheduling multiplexors, a mod 2b adder, the 

RoundFunction Sbox, a XOR operator and the 

multiplexor selectingbetween encryption or decryption 

paths) is very similar forany of our selected values for n 

and b. 

 

TABLE I 

IMPLEMENTATION RESULTS FOR SEA WITH 

DIFFERENT n AND b PARAMETERS 

 
For a given n value, it is noticeable that increasing 

bdecreases the number of rounds nr and therefore 

improvesthe throughput (since work frequencies are 

close in all ourexamples). Similarly, for our set of 

parameters, increasing b fora given n generally decreases 

the area requirements in slices.These observations lead 

to the empirical conclusion that, aslong as the b 

parameter is not a limiting factor for the workfrequency, 

increasing the word size leads to the most 

efficientimplementations for both area and throughput 

reasons. 

 

D. Comparisons with other block ciphers 

For our comparative discussions, we reported a few 

implementationresults of the AES Rijndael in Table II. 

Weselected the implementations in [7], [8] and [9] 

because theirdesign choices fit relatively well with those 

of the presentedSEA architectures. Mainly, these cores 

do not take advantageof RAM blocks nor loop unrolling. 

The four first cores allcorrespond to loop architectures 

with a 128-bit datapath. Theyrespectively have no 

pipeline (Pipe0) or a 3-stage pipeline(Pipe3) and use 

LUT-based or distributed RAM-based Sboxes.The fifth 

referenced implementation [7] uses a 32-bit datapathand 

consequently reduces the area requirements at the costof 

a smaller throughput. Finally, [8] uses a 128-bit 

datapathwith a pipelined composite field description of 

the Sbox. Asa matter of fact, a lot of other FPGA 

implementations of theAES can be found in the open 

literature, e.g. taking advantageof different datapath 

sizes, FPGA RAM blocks, pipelining,unrolling 

techniques, ..., e.g. [10], [11], [12] and [13]. 

 

Additionally, we compared these results with those 

obtainedfor ICEBERG, a block cipher optimized for 

reconfigurablehardware devices. Details on the 

ICEBERG architecture anddifferent possible 

implementation tradeoffs are discussed in[14]. The 

reported result corresponds to a single-round 

looparchitecture without pipeline. Compared to the AES 

Rijndael,ICEBERG is built upon a combination of 4-bit 

operations thatperfectly fit into the FPGAs LUTs which 

intently results in avery good ratio between throughput 

and area.The implementation results in Table II lead to 

the followingobservations. First, in terms of area 

requirements (for a datapathsize equal to the block size), 
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SEA generally exhibits thesmallest cost. Measuring the 

area efficiency with the bit perslice metric leads to a 

similar conclusion. Of course, the arearequirements of, 

e.g. the AES Rijndael could still be decreasedby using 

smaller datapaths [15] and such a comparative tableonly 

serves as an indicator rather than a strict 

comparison.However, in the present case, these results 

clearly suggest thelow-cost purpose of our presented 

implementations.By contrast, looking at the throughput 

per area metricindicates that these low area requirements 

come with weakthroughputs. This is of course mainly 

due to the high numberof rounds in SEA.With this 

respect, it is interesting to compareSEA and ICEBERG 

since their implementation results clearlyillustrate their 

respective context/platform-oriented design 

approach.Namely SEA is purposed for low cost 

applicationswhile ICEBERG optimizes the throughput 

per slice. 

 

These numbers also confirm the differences between 

specializedalgorithms and standard solutions. It must be 

underlinedwith this respect that the AES Rijndael still 

rangesrelatively well in terms of hardware cost and 

throughputefficiency, compared to the investigated 

specialized solutions.Note also that SEA was initially 

purposed for low costsoftware implementations. While 

these design criteria turnedout to allow low cost 

hardware implementations as well, it islikely that 

targeting a cipher specifically for low cost 

hardwarewould lead to even better solutions, e.g. [16]. 

Finally, it is also important to emphasize a number 

ofadvantages in SEA that cannot be found in other 

recent blockciphers, namely its simplicity, scalability 

(re-implementingSEA for a new block size does not 

require to re-write code), good combination of 

encryption and decryption and ability toderive keys “on 

the fly” both in encryption and decryption. 

 

TABLE II 

IMPLEMENTATION RESULTS OF OTHER 

BLOCK CIPHERS. 

 
IV SYNTHESIS AND SIMULATION RESULTS 

To investigate the advantages of using our technique in 

terms of area overhead against “Fully ECC”and against 

the partially protection, we implemented andsynthesized 

for a Xilinx XC3S500E different versions of a32-bit, 32-

entry, dual read ports, single write port registerfile. Once 

the functional verification is done, the RTL model is 

taken to the synthesis process using the Xilinx ISE tool. 

In synthesis process, the RTL model will be converted to 

the gate level netlist mapped to a specific technology 

library. Here in this Spartan 3E family, many different 

devices were available in the Xilinx ISE tool. In order to 

synthesis this design the device named as “XC3S500E” 

has been chosen and the package as “FG320” with the 

device speed such as “-4”. 

The corresponding schematics of the adders after 

synthesis is shown below. 

 
Fig.3. RTL schematic of SEA 
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Fig.4. RTL schematic of Internal blocks of SEA 

 

 
Fig.5. Technology schematic of SEA 

 
Fig.6.Synthesis report of SEA 

 
Fig.7.Simulation of SEA 
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V. CONCLUSION 

This letter presented FPGA putting into uses of an (able 

to be made bigger or smaller) (turning messages into 

secret code) set of computer instructions for different 

sets of limits/guidelines. The presented parametric 

(related to the beautiful design and construction of 

buildings, etc.) allows keeping the flexibility of the set 

of computer instructions by taking advantage of plain 

and common thing/not a brand-name drug Verilog HDL 

coding. It executes one round per clock cycle, figures 

out/calculates the round and the key round in parallel 

and supports both (turning messages into secret code) 

and (changing secret codes into readable messages) at an 

(almost nothing/very little) cost. Compared to other 

recent block codes/puzzles, SEA shows a very small area 

use that comes at the cost of a reduced throughput. As a 

result, it can be thought about/believed as an interesting 

other choice for held back (surrounding conditions). 

Scopes for further research include low power ASIC 

putting into uses purposed for RFIDs as well as further 

cryptanalysis efforts and security (processes of figuring 

out the worth, amount, or quality of something). 
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