

 Page 24

Scalable Encryption Algorithm Design & Implementation using

Flow Chart Approach

M. Bhagavanth

Department of Computer Science and Engineering,

CVR College of Engineering,

Ibrahimpatnam (M), Rangareddy (D), Telangana 501510, India.

ABSTRACT

The (putting into) use of (turning messages into secret

code)/decryption set of computer instructions is the

most extremely important part of the secure

communication. In now existing (turning messages

into secret code) sets of computer instructions there is a

trade-off between putting into use cost and resulting

performances. SEA is an (able to be made bigger or

smaller) (turning messages into secret code) set of

computer instructions targeted for small embedded

computer programs. It was, at first, designed for

software putting into uses in controllers, smart cards or

processors. In this letter, we (ask lots of questions

about/try to find the truth about) its performances in

recent FPGA devices. For this purpose, a loop (related

to the beautiful design and construction of buildings,

etc.) of the block code/puzzle is presented. Beyond its

low cost performances, a significant advantage of the

proposed (related to the beautiful design and

construction of buildings, etc.) is its full flexibility for

any limit/guideline of the (able to be made bigger or

smaller) (turning messages into secret code) set of

computer instructions, taking advantage of plain and

common thing/not a brand-name drug Verilog HDL

coding. The letter also carefully describes the putting

into use details allowing us to keep small area needed

things. Finally, a (serving to compare two or more

things) performance discussion of SEA with the

Advanced (turning messages into secret code) Standard

Rijndael and ICEBERG(a code/puzzle purposed for

(producing a lot with very little waste) FPGA putting

into uses) is proposed. It illustrates the interest of

(raised, flat supporting surface)/context-oriented block

calculates/codes design and, as far as SEA is

concerned, its low area needed things and reasonable

(wasting very little while working or producing

something).

I.INTRODUCTION

Scalable encryption algorithm is targeted for small-

embedded application with limited resources.SEA is a

parametric block cipher for resource constrained systems

(e.g. sensor networks, RFIDs) that has been introduced

in [1]. It was initially designed as a low-cost

encryption/authentication routine (i.e. with small code

size and memory) targeted for processors with a limited

instruction set(i.e. AND, OR, XOR gates, word rotation

and modular addition).Additionally and contrary to most

recent block ciphers (e.g.the DES [2] and AES Rijndael

[3], [4]), the algorithm takes the plaintext, key and the

bus sizes as parameters and therefore can be

straightforwardly adapted to various implementation

contexts and/or security requirements. Compared to

older solutions for low cost encryption like TEA (Tiny

Encryption Algorithm) [5] or Yuval’s proposal [6], SEA

also benefits from a stronger security analysis, derived

from recent advances in block cipher

design/cryptanalysis.

In practice, SEA has been proven to be an efficient

solution for embedded software applications using

microcontrollers, but its hardware performances have not

yet been investigated. Consequently, and as a first step

towards hardware performance analysis, this letter

Cite this article as: M. Bhagavanth, "Scalable Encryption

Algorithm Design & Implementation using Flow Chart Approach",

International Journal of Research in Advanced Computer Science

Engineering, Volume 4 Issue 2, 2018, Page 24-32.

 Page 25

explores the features of a low cost FPGA

encryption/decryption core for SEA. In addition to the

performance evaluation, we show that the algorithm’s

scalability can be turned into a fully generic Verilog

HDL design, so that any text, key and bus size can be

straightforwardly re-implemented without any

modification of the hardware description language, with

standard synthesis and implementation tools.

In the rest of the letter, we first provide a brief

description of the algorithm specifications. Then we

describe the details of our generic loop architecture and

its implementation results. Finally, we discuss some

illustrative comparisons of the hardware performances of

SEA, the AES Rijndael and ICEBERG (a cipher

purposed for efficient FPGA implementations) with

respect to their design approach (e.g. flexible vs.

platform/context-oriented).

II. ALGORITHM DESCRIPTION

Parameters and definitions

SEA n,b operates on various text, key and word sizes. It

is based on a Feistel structure with a variable number of

rounds, and is defined with respect to the following

parameters:

 n: plaintext size, key size.

 b: processor (or word) size.

 nb = n/2b : number of words per Feistel branch.

 nr: number of block cipher rounds.

As only constraint, it is required that n is a multiple of

6b (see[1] for the details). For example, using an 8-bit

processor, wecan derive a 96-bit block ciphers, denoted

as SEA96,8.

Let x be a n/2 -bit vector. We consider two

representations:

 Bit representation: xb = x(n/2− 1) . . . x(2) x(1)

x(0).

 Word representation: xw = xnb−1 xnb−2 . . . x2 x1

x0.

Fig. 1. Encrypt/decrypt round and key round.

Basic operations

Due to its simplicity constraints, SEAn,b is based on

alimited number of elementary operations (selected for

theiravailability in any processing device) denoted as

follows:

(1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-

bitsubstitution box S := {0, 5, 6, 7, 4, 3, 1, 2} that can be

appliedbitwise to any set of 3-bit words for efficiency

purposes. Inaddition, we use the following rotation

operations:(4) Word rotation R, defined on nb-word

vectors:

(5) Bit rotation r, defined on nb-word vectors:

where 0 ≤ i ≤nb/3 – 1and >>>and <<<respectively

representthe cyclic right and left shifts inside a word.

The round and key round

Based on the previous definitions, the encrypt round

FE,decrypt round FD and key round FK are pictured in

Figure 1and defined as:

 Page 26

The complete cipher

The cipher iterates an odd number nr of rounds.

Thefollowing pseudo-C code encrypts a plaintext P

under a key Kand produces a ciphertext C. P,C and K

have a parametricbit size n. The operations within the

cipher are performedconsidering parametric b-bit words.

C=SEAn,b(P,K)

{

% initialization:

L0&R0 = P;

KL0&KR0 = K;

% key scheduling:

where & is the concatenation operator, KR⌊nr/2 ⌋is taken

beforethe switch and C(i) is a nb-word vector of which

all the wordshave value 0 excepted the LSW that equals

i. Decryption isexactly the same, using the decrypt round

FD.

III. IMPLEMENTATION OF A LOOP

ARCHITECTURE

A. Description

The structure of our loop architecture for SEA is

depictedin figure 2, with the round function on the left

part and thekey schedule on the right part. Resource-

consuming blocksare the Sboxes and the mod2b adder;

the Word Rotate andBit Rotate blocks are implemented

by swapping wires.According to the Specifications, the

key schedule containstwo multiplexors allowing to

switch the right and left part ofthe round key at half the

execution of the algorithm using the appropriate

command signal Switch. The multiplexorcontrolled by

HalfExec provides the round function withthe right part

of the round key for the first half of theexecution and

transmits its left part instead after the switch. Tosupport

both encryption and decryption, we finally added

twomultiplexors controlled by the Encrypt signal.

Supplementaryarea consumption will be caused by the

two routing paths.

 Page 27

Fig. 2. Loop implementation of SEA.

The algorithm can easily beneficiate of a modular

implementation,taking as only mandatory parameters the

size ofthe plaintexts and keys n and the word length b.

The numberof rounds nr is an optional input that can be

automaticallyderived from n and b according to the

guidelines given in [1].From the datapath description of

Figure 2, a scalable designcan then be straightforwardly

obtained by using generic Verilog HDLcoding. A

particular care only has to be devoted to an efficientuse

of the mod 2
b
 adders in the key scheduling part.

In the round function, the mod 2
b
 adders are realizedby

using nb b-bits adders working in parallel without

carrypropagation between them. However, in the key

schedule, thesignal Const_i (provided by the control

part) can only takea value between 0 and nr/2 .

Therefore, it may not be necessaryto use nb adders. If

log2(nr/2) ≤ b, then a single adder issufficient. If

log2(nr/2) > b, then ⌈log2(nr/2)/2] adders will

berequired. In the next section, we detail the

implementationresults of this architecture for different

parameters.

B. ENCRYPTION AND DECRYPTION

FLOWCHART

Figure.3 shows the encryption flow chart used in design

of theprogram. The data and key are the inputs. In the

next step bothinputs are divided into two parts and

applied to the processingblocks. The encryption is

completed in two loop operations. Infirst loop i will take

a value of 1 to nr/2. That is the half executionpart, the

right part of the key is selected during this

operations.Both key and data swap in end of each,

iteration. After finishingthe half execution switch

operation is performed. It is done byswap left and right

part of key and the remaining rounds the keypart will not

swap in the next loop. The same operation isperformed

in next loop except that the left part key is selected inthe

round operation. Finally the encrypt output is taken

byconcatenating right and left part output of encrypt

round.Figure.4 shows decryption flow chart, the same

process is doneduring this flowchart except that inverse

word rotation operationis performed after bit rotation,

instead in encrypt round the wordrotation is performed

before bitwise XOR.

 Page 28

C. Implementation results

Implementation results were extracted after place and

route with the ISE 9.2i tool from Xilinx on a xc4vlx25

VIRTEX-4 platform with speed grade -12. In order to

illustrate themodularity of our architecture, we ran the

design tool fordifferentsets of parameters, with

plaintext/key sizes n rangingfrom 48 to 144 bits and

word lengths of 4, 6, 7, 8, and 12bits. For the control

part, we used the recommended number ofrounds

The computed implementationcosts stand for both the

operative and control parts.A summary of these results is

presented in table I, wherethe area requirements (in

slices), the work frequency andthe throughput are

provided. We observe that the obtainedvalues for the

work frequency are very close for alltheimplementations.

Indeed, the critical path (passing throughthe key

scheduling multiplexors, a mod 2b adder, the

RoundFunction Sbox, a XOR operator and the

multiplexor selectingbetween encryption or decryption

paths) is very similar forany of our selected values for n

and b.

TABLE I

IMPLEMENTATION RESULTS FOR SEA WITH

DIFFERENT n AND b PARAMETERS

For a given n value, it is noticeable that increasing

bdecreases the number of rounds nr and therefore

improvesthe throughput (since work frequencies are

close in all ourexamples). Similarly, for our set of

parameters, increasing b fora given n generally decreases

the area requirements in slices.These observations lead

to the empirical conclusion that, aslong as the b

parameter is not a limiting factor for the workfrequency,

increasing the word size leads to the most

efficientimplementations for both area and throughput

reasons.

D. Comparisons with other block ciphers

For our comparative discussions, we reported a few

implementationresults of the AES Rijndael in Table II.

Weselected the implementations in [7], [8] and [9]

because theirdesign choices fit relatively well with those

of the presentedSEA architectures. Mainly, these cores

do not take advantageof RAM blocks nor loop unrolling.

The four first cores allcorrespond to loop architectures

with a 128-bit datapath. Theyrespectively have no

pipeline (Pipe0) or a 3-stage pipeline(Pipe3) and use

LUT-based or distributed RAM-based Sboxes.The fifth

referenced implementation [7] uses a 32-bit datapathand

consequently reduces the area requirements at the costof

a smaller throughput. Finally, [8] uses a 128-bit

datapathwith a pipelined composite field description of

the Sbox. Asa matter of fact, a lot of other FPGA

implementations of theAES can be found in the open

literature, e.g. taking advantageof different datapath

sizes, FPGA RAM blocks, pipelining,unrolling

techniques, ..., e.g. [10], [11], [12] and [13].

Additionally, we compared these results with those

obtainedfor ICEBERG, a block cipher optimized for

reconfigurablehardware devices. Details on the

ICEBERG architecture anddifferent possible

implementation tradeoffs are discussed in[14]. The

reported result corresponds to a single-round

looparchitecture without pipeline. Compared to the AES

Rijndael,ICEBERG is built upon a combination of 4-bit

operations thatperfectly fit into the FPGAs LUTs which

intently results in avery good ratio between throughput

and area.The implementation results in Table II lead to

the followingobservations. First, in terms of area

requirements (for a datapathsize equal to the block size),

 Page 29

SEA generally exhibits thesmallest cost. Measuring the

area efficiency with the bit perslice metric leads to a

similar conclusion. Of course, the arearequirements of,

e.g. the AES Rijndael could still be decreasedby using

smaller datapaths [15] and such a comparative tableonly

serves as an indicator rather than a strict

comparison.However, in the present case, these results

clearly suggest thelow-cost purpose of our presented

implementations.By contrast, looking at the throughput

per area metricindicates that these low area requirements

come with weakthroughputs. This is of course mainly

due to the high numberof rounds in SEA.With this

respect, it is interesting to compareSEA and ICEBERG

since their implementation results clearlyillustrate their

respective context/platform-oriented design

approach.Namely SEA is purposed for low cost

applicationswhile ICEBERG optimizes the throughput

per slice.

These numbers also confirm the differences between

specializedalgorithms and standard solutions. It must be

underlinedwith this respect that the AES Rijndael still

rangesrelatively well in terms of hardware cost and

throughputefficiency, compared to the investigated

specialized solutions.Note also that SEA was initially

purposed for low costsoftware implementations. While

these design criteria turnedout to allow low cost

hardware implementations as well, it islikely that

targeting a cipher specifically for low cost

hardwarewould lead to even better solutions, e.g. [16].

Finally, it is also important to emphasize a number

ofadvantages in SEA that cannot be found in other

recent blockciphers, namely its simplicity, scalability

(re-implementingSEA for a new block size does not

require to re-write code), good combination of

encryption and decryption and ability toderive keys “on

the fly” both in encryption and decryption.

TABLE II

IMPLEMENTATION RESULTS OF OTHER

BLOCK CIPHERS.

IV SYNTHESIS AND SIMULATION RESULTS

To investigate the advantages of using our technique in

terms of area overhead against “Fully ECC”and against

the partially protection, we implemented andsynthesized

for a Xilinx XC3S500E different versions of a32-bit, 32-

entry, dual read ports, single write port registerfile. Once

the functional verification is done, the RTL model is

taken to the synthesis process using the Xilinx ISE tool.

In synthesis process, the RTL model will be converted to

the gate level netlist mapped to a specific technology

library. Here in this Spartan 3E family, many different

devices were available in the Xilinx ISE tool. In order to

synthesis this design the device named as “XC3S500E”

has been chosen and the package as “FG320” with the

device speed such as “-4”.

The corresponding schematics of the adders after

synthesis is shown below.

Fig.3. RTL schematic of SEA

 Page 30

Fig.4. RTL schematic of Internal blocks of SEA

Fig.5. Technology schematic of SEA

Fig.6.Synthesis report of SEA

Fig.7.Simulation of SEA

 Page 31

V. CONCLUSION

This letter presented FPGA putting into uses of an (able

to be made bigger or smaller) (turning messages into

secret code) set of computer instructions for different

sets of limits/guidelines. The presented parametric

(related to the beautiful design and construction of

buildings, etc.) allows keeping the flexibility of the set

of computer instructions by taking advantage of plain

and common thing/not a brand-name drug Verilog HDL

coding. It executes one round per clock cycle, figures

out/calculates the round and the key round in parallel

and supports both (turning messages into secret code)

and (changing secret codes into readable messages) at an

(almost nothing/very little) cost. Compared to other

recent block codes/puzzles, SEA shows a very small area

use that comes at the cost of a reduced throughput. As a

result, it can be thought about/believed as an interesting

other choice for held back (surrounding conditions).

Scopes for further research include low power ASIC

putting into uses purposed for RFIDs as well as further

cryptanalysis efforts and security (processes of figuring

out the worth, amount, or quality of something).

REFERENCES

[1] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-

J.Quisquater, “SEA:A Scalable Encryption Algorithm

for Small Embedded Applications,”in the Proceedings of

CARDIS 2006, ser. LNCS, vol. 3928, Taragona,Spain,

2006, pp. 222–236.

[2] Data Encryption Standard, NIST Federal Information

Processing StandardFIPS 46-1, Jan. 1998.

[3] J. Daemen, V. Rijmen, The Design of Rijndael.

Springer-Verlag, 2001.

[4] Advanced Encryption Standard, NIST Federal

Information ProcessingStandard FIPS 197, Nov. 2001.

[5] D. Wheeler and R. Needham, “TEA, a Tiny

Encryption Algorithm,” inthe Proceedings of Fast

Software Encryption - FSE 1994, ser. LNCS,vol. 1008,

Leuven, Belgium, Dec. 1994, pp. 363–366.

[6] G. Yuval, “Reinventing the Travois:

Encryption/MAC in 30 ROMBytes,” in the Proceedings

of Fast Software Encryption - FSE 1997,

ser. LNCS, vol. 1267, Haifa, Israel, Jan. 1997, pp. 205–

209.

[7] N. Pramstaller and J. Wolkerstorfer, “A Universal

and Efficient AES Coprocessorfor Field Programmable

Logic Arrays,” in the Proceedings ofFPL 2004, LNCS,

vol. 3203, Leuven, Belgium, Aug. 2004, pp. 565–574.

[8] F.-X. Standaert, G. Rouvroy, J.-J.Quisquater, and J.-

D.Legat, “EfficientImplementation of Rijndael

Encryption in Reconfigurable Hardware:

Improvementsand Design Tradeoffs,” in the Proceedings

of CryptographicHardware and Embedded Devices -

CHES 2003, ser. LNCS, vol. 2779,Cologne, Germany,

Sep. 2003, pp. 334–350.

[9] J. Zambreno, D. Nguyen, and A. Choudhary,

“Exploring Area/DelayTradeoffs in an AES FPGA

implementation,” in the Proceedings of FPL2004, ser.

LNCS, vol. 3203, Leuven, Belgium, Aug. 2004, pp.

575–585.

[10] K. Gaj and P. Chodowiec, “Fast Implementation

and Fair Comparisonof the Final Candidates for

Advanced Encryption Standard Using

FieldProgrammable Gate Arrays,” in Topics in

Cryptology - CT-RSA 2001,LNCS., vol. 2020, San

Fransisco, USA, pp. 84-99.

[11] G. P. Saggese, A. Mazzeo, N. Mazzocca, and A. G.

M. Strollo,“An FPGA-Based Performance Analysis of

the Unrolling, Tiling, and Pipelining of the AES

Algorithm,” in the Proceedings of FPL 2003, ser.LNCS,

vol. 2778, Lisbon, Portugal, Sep. 2003, pp. 292–302.

 Page 32

[12] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An

FPGA Implementationand Performance Evaluation of

the AES Block Cipher CandidateAlgorithm Finalists,” in

AES Candidate Conference, 2000, pp. 13–27.

[13] K. Jarvinen, M. Tommiska, J. Skytta, “Comparative

Survey of High-Performance Cryptographic Algorithm

Implementations on FPGAs,”IEE Proceedings on

Information Security, vol. 152, Oct. 2005, pp. 3–12.

[14] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-

J.Quisquater, “FPGAImplementations of the ICEBERG

Block Cipher,” in the Proceedingsof ITCC 2005, vol. 1,

Las Vegas, USA, Apr. 2005, pp. 556–561.

[15] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen,

“AES Implementationon a Grain of Sand,” in IEE

Proceedings on Information Security, vol.152. IEE, Oct.

2005, pp. 13–20.

[16] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S.

Koo, C. Lee,D. Chang, J. Lee, K. Jeong, J. Kim, and S.

Chee, “HIGHT: a New Block Cipher Suitable for Low-

Resource Devices,” in The Proceedingsof Cryptographic

Hardware and Embedded Devices - CHES 2006,

ser.LNCS, vol. 4249, Yokohama, Japan, Oct. 2006, pp.

13–20.

