

 Page 1

DeyPoS-Dededuplicatable Dynamic Proof of Storage for Multi-User

Environment

Vinil Kumar Bhandekar

Department of Computer Science and Engineering,

Vignana Bharathi Institute of Technology,

Hyderabad, T.S - 501301, India.

V.Sridhar Reddy

Department of Computer Science and Engineering,

Vignana Bharathi Institute of Technology,

Hyderabad, T.S - 501301, India.

ABSTRACT:

Dynamic Proof of Storage (PoS) is a useful

cryptographic primitive that enables a user to check the

integrity of outsourced files and to efficiently update

the files in a cloud server. Although researchers have

proposed many dynamic PoS schemes in single user

environments, the problem in multi-user environments

has not been investigated sufficiently. A practical

multi-user cloud storage system needs the secure

client-side cross-user deduplication technique, which

allows a user to skip the uploading process and obtain

the ownership of the files immediately, when other

owners of the same files have uploaded them to the

cloud server. To the best of our knowledge, none of the

existing dynamic PoSs can support this technique. In

this paper, I introduce the concept of Deduplicatable

dynamic proof of storage and propose an efficient

construction called DeyPoS, to achieve dynamic PoS

and secure cross-user deduplication, simultaneously.

Considering the challenges of structure diversity and

private tag generation, I exploit a novel tool called

Homomorphic Authenticated Tree (HAT). I prove the

security of our construction, and the theoretical

analysis and experimental results show that our

construction is efficient in practice.

INTRODUCTION

Storage outsourcing is turning into additional and

additional engaging to each business and domain as a

result of the benefits of low price, high accessibility, and

simple sharing. mutually of the storage outsourcing

forms, cloud storage gains wide attention in recent years.

several firms, like Amazon, Google, and Microsoft, give

their own cloud storage services, wherever users will

transfer their files to the servers, access them from

numerous devices, and share them with the others.

though cloud storage services area unit wide adopted in

current days, there still stay several security problems

and potential threats .Data integrity is one in every of the

foremost vital properties once a user outsources its files

to cloud storage. Users ought to be convinced that the

files hold on within the server aren't tampered. ancient

techniques for safeguarding knowledge integrity, like

message authentication codes (MACs) [1] and digital

signatures need users to transfer all of the files from the

cloud server for verification, that incurs an important

communication price. These techniques aren't

appropriate for cloud storage services wherever users

might check the integrity oft, like each hour .Thus;

researchers introduced Proof of Storage (PoS) for

checking the integrity while not downloading files from

the cloud server. What is more, users might also need

many dynamic operations, like modification, insertion,

and deletion, to update their files, whereas maintaining

the aptitude of PoS. Dynamic PoS is projected for such

dynamic operations [2].

Existing System:

 In most of the prevailing dynamic PoSs, a tag

used for integrity verification is generated by the

key key of the uploader. Thus, different

homeowners United Nations agency have the

Cite this article as: Vinil Kumar Bhandekar & V.Sridhar Reddy,

"DeyPoS-Dededuplicatable Dynamic Proof of Storage for Multi-User

Environment", International Journal of Research in Advanced

Computer Science Engineering, Volume 4 Issue 3, 2018, Page 1-8.

 Page 2

possession of the file however haven't uploaded

it because of the cross-user deduplication on the

client-side cannot generate a brand new tag once

they update the file. during this state of affairs,

the dynamic PoSs would fail.

 Halevi et al. introduced the construct of proof of

possession that could be a resolution of cross-

user deduplication on the client-side. It needs

that the user will generate the Merkle tree while

not the assistance from the cloud server, that

could be a massive challenge in dynamic PoS.

 Pietro and Sorniotti projected another proof of

possession theme that improves the potency.

 Xu et al.proposed a client-side deduplication

theme for encrypted information, however the

theme employs a settled proof algorithmic

program that indicates that each file contains a

settled short proof [3]. Thus, anyone United

Nations agency obtains this proof will pass the

verification while not possessing the file

regionally.

Disadvantages:

 Existing dynamic PoSs can not be extended to

the multi-user atmosphere.

 All existing techniques for cross-user

deduplication on the client-side Ire designed for

static files. Once the files ar updated, the cloud

server must regenerate the entire attested

structures for these files, that causes significant

computation price on the server-side.

 Due to the matter of structure diversity and

personal tag generation, existing system can not

be extended to dynamic PoS.

 Unfortunately, these schemes cannot support

deduplication thanks to structure diversity and

personal tag generation.

Proposed System:

 To the simplest of our information, this can be

the primary work to introduce a primitive known

as Deduplicatable dynamic Proof of Storage

(Deduplicatable dynamic PoS), that solves the

structure diversity and personal tag generation

challenges.

 In distinction to the present attested structures,

like skip list and Merkle tree, I style a unique

attested structure known as Homomorphic

attested Tree (HAT) [4], to scale back the

communication value in each the proof of

storage section and also the deduplication

section with similar computation value.

 Note that HAT will support integrity

verification, dynamic operations, and cross-user

deduplication with smart consistency.

 I propose and implement the primary

economical construction of deduplicatable

dynamic PoS known as Dey-PoS, that supports

unlimited range of verification and update

operations. the safety of this construction is

proved within the random oracle model, and also

the performance is analyzed in theory and

through an experiment [5].

ADVANTAGES:

 It is AN economical echt structure.

 It is that the 1st sensible Deduplicatable dynamic

PoS theme known as DeyPoS and tested its

security within the random oracle model.

 The theoretical and experimental results show

that our DeyPoS implementation is economical,

 Performs higher particularly once the file size

and also the range of the challenged blocks

square measure massive

System Architecture:

 Page 3

IMPLEMENTATION

Modules:

 System Construction

 Block Generation

 Deduplicatable Dynamic POS

 Homomorphic Authenticated Tree

MODULES DESCSRIPTION:

System Construction:

 In the first module I develop the System

Construction module, to evaluate and implement

a Deduplicatable dynamic proof of storage and

propose an efficient construction called DeyPoS.

For this purpose I develop User and Cloud

entities. In User entity, a user can upload a new

File, Update uploaded File blocks and a user can

deduplicate other users File by using

Deduplicatable dynamic proof of storage [6].

 Our system model considers two types of

entities: the cloud server and users. For each file,

original user is the user who uploaded the file to

the cloud server, while subsequent user is the

user who proved the ownership of the file but

did not actually upload the file to the cloud

server.

 In the Cloud entity, the cloud first check login

authentication of users and then it gives

permission for deduplication process for

authenticated users and user’s data are stored in

blocks.

 The asymptotic performance of our scheme in

comparison with related schemes, where n

denotes the number of blocks, b denotes the

number of the challenged blocks, and |m|

denotes the size of one block. From the table, I

observe that our scheme is the only one

satisfying the cross-user deduplication on the

client-side and dynamic proof of storage

simultaneously. Furthermore, the asymptotic

performance of our scheme is better than the

other schemes except which only provides weak

security guarantee.

 Block Generation:

 In this module, I develop the Block Generation

process. In the update phase, users may modify,

insert, or delete some blocks of the files. Then,

they update the corresponding parts of the

encoded files and the authenticated structures in

the cloud server, even the original files were not

uploaded by them. Note that, users can update

the files only if they have the ownerships of the

files, which means that the users should upload

the files in the upload phase or pass the

verification in the Deduplication phase.

 Though I can create n-blocks in this module, I

split the files into 3 Blocks. The Blocks for files

are divided equally accordingly and then the

blocks are uploaded in the Cloud Server too [7].

Deduplicatable Dynamic POS:

 In this module I specialise in a Deduplicatable

Dynamic PoS theme in multiuser environments.

Deduplicatable Dynamic Proof of Storage is

employed to deduplicate the opposite users file

with correct authentication however while not

uploading identical file.

 Deduplicatable Dynamic Proof of Storage

(deduplicatable dynamic PoS), that solves the

structure diversity and personal tag generation

challenges.

 The main method of this module is Original user

is that the user UN agency uploaded the file to

the cloud server, whereas succeeding user is that

the user UN agency verified the possession of

the file however failed to really transfer the file

to the cloud server. There ar 5 phases in an

exceedingly deduplicatable dynamic PoS

system: pre-process, upload, deduplication,

update, and proof of storage.

 In the pre-process part, users shall transfer their

native files. The cloud server decides whether or

not these files ought to be uploaded. If the

transfer method is granted, move into the

 Page 4

transfer phase; otherwise, move into the

deduplication part.

 In the transfer part, the files to be uploaded don't

exist within the cloud server. the initial users

write in code the native files and transfer them to

the cloud server.

 In the deduplication part, the files to be uploaded

exist already within the cloud server. the next

users possess the files regionally and also the

cloud server stores the documented structures of

the files. succeeding users got to persuade the

cloud server that they own the files while not

uploading them to the cloud server.

 In the update part, users could modify, insert, or

delete some blocks of the files. Then, they

update the corresponding elements of the

encoded files and also the documented structures

within the cloud server, even the initial files Ire

not uploaded by them. Note that, users will

update the files providing they need the

ownerships of the files, which implies that the

users ought to transfer the files within the

transfer part or pass the verification within the

deduplication part. for every update, the cloud

server has got to reserve the initial file and also

the documented structure if there exist

alternative homeowners, and record the updated

a part of the file and also the documented

structure. this allows users to update a file at the

same time in our model, since every update is

barely hooked up to the initial file and

documented structure [8].

 In the proof of storage part, users solely possess

atiny low constant size data regionally and that

they need to ascertain whether or not the files ar

dependably hold on within the cloud server

while not downloading them. The files might not

be uploaded by these users, however they pass

the deduplication part and prove that they need

the ownerships of the files.

Homomorphic Authenticated Tree:

 In this module I style a completely unique

attested structure referred to as homomorphic

attested tree (HAT).For scale back the

communication value in each the proof of

storage part and therefore the deduplication part

with similar computation value. And conjointly

HAT will support integrity verification, dynamic

operations, and cross-user deduplication with

sensible consistency [9-11].

 A HAT may be a binary tree within which every

leaf node corresponds to a knowledge block. tho'

HAT doesn't have any limitation on the quantity

of knowledge blocks, for the sake of description

simplicity, I assume that the quantity of

knowledge blocks n is up to the quantity of leaf

nodes in an exceedingly full binary tree.

 Thus, for a file F = (m1, m2, m3, m4) wherever

mι represents the ι-th block of the file. every

node in HAT consists of a four-tuple νi = (i, li,

vi, ti). i is that the distinctive index of the node.

The index of the foundation node is one, and

therefore the indexes will increase from high to

bottom and from left to right. li denotes the

quantity of leaf nodes that may be reached from

the i-th node. vi is that the version range of the i-

th node. ti represents the tag of the i-th node.

 When a HAT is initialized, the version range of

every leaf is one, and therefore the version range

of every non-leaf node is that the total of that of

its 2 youngsters. For the i-th node, mi denotes

the mixture of the blocks admire its leaves. The

tag ti is computed from F(mi), wherever F

denotes a tag generation operate [12].

 Page 5

SCREEN SHOTS

 Page 6

 Page 7

 Page 8

CONCLUSION

I projected the great needs in multi-user cloud storage

systems and introduced the model of deduplicatable

dynamic PoS. I designed a unique tool known as HAT

that is associate economical documented structure.

supported HAT, I projected the primary sensible

deduplicatable dynamic PoS theme known as DeyPoS

and well-tried its security within the random oracle

model. The theoretical and experimental results show

that our DeyPoS implementation is economical,

particularly once the file size and therefore the variety of

the challenged blocks area unit giant.

REFERENCES

[1] S. Kamara and K. Lauter, “Cryptographic cloud

storage,” in Proc. of FC, pp. 136–149, 2010.

[2] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A Secure

and Dynamic Multi-Keyword Ranked Search Scheme

over Encrypted Cloud Data,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 2, pp. 340–

352, 2016.

[3] Z. Xiao and Y. Xiao, “Security and privacy in cloud

computing,” IEEE Communications Surveys Tutorials,

vol. 15, no. 2, pp. 843–859, 2013.

[4] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu,

“From Security to Assurance in the Cloud: A Survey,”

ACM Comput. Surv., vol. 48, no. 1, pp. 2:1–2:50, 2015.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” in Proc. of CCS, pp.

598–609, 2007.

[6] G. Ateniese, R. Di Pietro, L. V. Mancini, and G.

Tsudik, “Scalable and Efficient Provable Data

Possession,” in Proc. of SecureComm, pp. 1–10, 2008.

[7] G. Ateniese, S. Kamara, and J. Katz, “Proofs of

storage from homomorphic identification protocols,” in

Proc. of ASIACRYPT, pp. 319–333, 2009.

[8] C. Erway, A. K¨upc ¨u, C. Papamanthou, and R.

Tamassia, “Dynamic provable data possession,” in Proc.

of CCS, pp. 213–222, 2009.

[9] R. Tamassia, “Authenticated Data Structures,” in

Proc. of ESA, pp. 2–5, 2003.

[10] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling public verifiability and data dynamics for

storage security in cloud computing,” in Proc. of

ESORICS, pp. 355–370, 2009.

[11] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu,

and C. A. Reuter, “Outsourced proofs of retrievability,”

in Proc. of CCS, pp. 831–843, 2014.

[12] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Journal of Cryptology, vol. 26, no. 3, pp.

442–483, 2013.

