

 Page 18

Deep Learning Approaches in Computer Vision

Ravi Kumar Vadana

Department of Computer Science & Engineering,

Sarada Institute of Science, Technology and

Management,

Srikakulam, Andhra Pradesh 532404, India.

Mr.K.Srinivasarao

Department of Computer Science & Engineering,

Sarada Institute of Science, Technology and

Management,

Srikakulam, Andhra Pradesh 532404, India.

ABSTRACT

Efficient and correct object detection has been an

important topic in the advancement of computer

vision systems. With the arrival of deep learning

techniques, the accuracy for object detection has

increased drastically. The project aims to include

progressive technique for object detection with the

goal of achieving high accuracy with real time

performance.

A significant challenge in many of the object

detection systems is the dependency on other

computer vision techniques for helping the deep

learning based approach, which leads to slow and

non-optimal performance.

In this project, we used a completely deep learning

based approach to solve the problem of object

detection in an end-to-end fashion. The network is

trained on the most challenging publicly available

dataset (PASCAL VOC), on which an object

detection challenge is conducted annually. The

resulting system is fast and accurate, thus aiding

those applications which require object detection.

INTRODUCTION

Problem Statement

Many problems in computer vision were saturating on

their accuracy before a decade. However, with the rise

of deep learning techniques, the accuracy of these

problems drastically improved. One of the major

problems was that of image classification, which is

defined as predicting the class of the image. A slightly

complicated problem is that of image localization [1-

5], where the image contains a single object and the

system should predict the class of the location of the

object in the image (a bounding box around the

object). The more complicated problem (this project),

of object detection involves both classification and

localization.

Computer Vision Task

CHALLENGES

The major challenge in this problem is that of the

variable dimension of the output which is caused due

to the variable number of objects that can be present in

any given input image. Any general machine learning

task requires a fixed dimension of input and output for

the model to be trained. Another important obstacle for

widespread adoption of object detection systems is the

requirement of real-time while being accurate in

detection. The more complex the model is, the more

time it requires for inference; and the less complex the

model is, the less is the accuracy. This trade-off

between accuracy and performance needs to be chosen

as per the application. The problem involves

classification as well as regression, leading the model

Cite this article as: Ravi Kumar Vadana & Mr.K.Srinivasarao,

"Deep Learning Approaches in Computer Vision", International

Journal of Research in Advanced Computer Science Engineering,

Volume 5 Issue 4, 2019, Page 18-28.

 Page 19

to be learnt simultaneously. This adds to the

complexity of the problem [2], [11-19].

REQUIREMENT ANALYSIS

Software Requirements Specification (SRS) is a

complete description of the behavior of the system to

be developed. It includes a set of use cases that

describe all the interactions the users will have with

the software.

FUNCTIONAL REQUIREMENTS

In software engineering, a functional requirement

defines a function of a software system or its

component. A function is described as a set of inputs,

the behavior, and outputs. Functional requirements

may be calculations, technical details, data

manipulation and processing and other specific

functionality that define what a system is supposed to

accomplish. Behavioral requirements describing all the

cases where the system uses the functional

requirements are captured in use cases. Functional

requirements are supported by non-functional

requirements (also known as quality requirements),

which impose constraints on the design or

implementation (such as performance requirements,

security, or reliability) [6].

Detect object from image and labeling

Detect Accuracy of the face object

Detect Face emotions like Sad, Angry, Happy etc

and labeling

NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements are often called qualities

of a system. Other terms for non-functional

requirements are "constraints", "quality attributes",

"quality goals" and "quality of service requirements,

―and "non-behavioral requirements."[1] Qualities,

that is, non- functional requirements, can be divided

into two main categories:

1. Execution qualities, such as security and usability,

which are observable at run time.

2. Evolution qualities, such as testability,

maintainability, extensibility and scalability, which are

embodied in the static structure of the software system.

HARDWARE REQUIREMENTS

The most common set of requirements defined by any

operating system or software application is the

physical computer resources, also known as hardware,

A hardware requirements list is often accompanied by

a hardware compatibility list (HCL) [8], especially in

case of operating systems. An HCL lists tested,

compatible, and sometimes incompatible hardware

devices for a particular operating system or

application. The following sub-sections discuss the

various aspects of hardware requirements.

 Page 20

1. Central Processing Unit (CPU) — Intel Core i5 6th

Generation processor or higher. An AMD equivalent

processor will also be optimal.

2. RAM — 8 GB minimum, 16 GB or higher is

recommended.

3. Graphics Processing Unit (GPU) — NVIDIA

GeForce GTX 960 or higher. AMD GPUs are not able

to perform deep learning regardless. For more

information on NVIDIA GPUs for deep learning

please visit https://developer.nvidia.com/cuda- gpus.

4. Operating System — Ubuntu or Microsoft Windows

10. I recommend updating Windows 10 to the latest

version before proceeding forward.

5. Keyboard: Standard Keyboard

6. Mouse: Standard Mouse

Please note that based on the dataset size, we need

higher configuration systems like GPUs (Graphical

processing Units) instead of CPUs.

SOFTWARE REQUIREMENTS

Software Requirements deal with defining software

resource requirements and pre-requisites that need to

be installed on a computer to provide optimal

functioning of an application. These requirements or

pre-requisites are generally not included in the

software installation package and need to be installed

separately before the software is installed.

1. Operating System: Any Operating System

Windows, Mac or Linux (Preferably 64 Bit Computer)

2. Platform: Anakonda3

3. Language: Python (Preferably Version >=3.0)

4. Python Modules: TensorFlow,ObjectCV, NLTK

(Natural Language Tool Kit) Keras, TFLearn

5. Integrated Development Environment: Any IDE

(Integrated Development Environment) Spyder or

Jupiter Notebook or VS Code or Sublim Text or Atom

or PyCharm

SYSTEM DESIGN

Systems design is the process or art of defining the

architecture, components, modules, interfaces, and

data for a system to satisfy specified requirements.

One could see it as the application of systems theory to

product development.

Methods for computer system design [citation needed].

The UML has become the standard language used in

Object-oriented analysis and design [citation needed].

It is widely used for modeling software

Systems and is increasingly used for high designing

non-software systems and organizations.

Unified Modeling Language (UML) :

The Unified Modeling Language (UML) [10] is a

general-purpose, developmental, modeling language in

the field of that is intended to provide a standard way

to visualize the design of a system.

The Unified Modeling Language (UML) offers a way

to visualize a system's architectural blueprints in a

diagram (see image), including elements such as:

components

the system will run

and interfaces)

 Page 21

Classification of UML Diagrams

Use case Diagram

Use Case Diagram of Object detection and

notification on Object Behavior

Class Diagram of Web Camera Capturing System

Activity Diagram of Object Detection

 Page 22

Building Blocks Diagram

State Chart Diagram of Object Eye

System Architecture

Python Language Comparison with C++ and Java

FEATURES OF PYTHON:

Python's features include −

Easy-to-learn − Python has few keywords, simple

structure, and a clearly defined

syntax. This allows the student to pick up the language

quickly.

Easy-to-read − Python code is more clearly defined

and visible to the eyes.

Easy-to-maintain − Python's source code is fairly

easy-to-maintain.

A broad standard library − Python's bulk of the

library is very portable and

cross-platform compatible on UNIX, Windows, and

Macintosh.

Interactive Mode − Python has support for an

interactive mode which allows

interactive testing and debugging of snippets of code.

Portable − Python can run on a wide variety of

hardware platforms and has the

same interface on all platforms.

Extendable − You can add low-level modules to the

Python interpreter. These

modules enable programmers to add to or customize

their tools to be more

efficient.

Databases − Python provides interfaces to all major

commercial SQL and No

SQL databases.

 Page 23

GUI Programming − Python supports GUI

applications that can be created and

ported to many system calls, libraries and windows

systems, such as Windows

MFC, Macintosh, and the X Window system of Unix.

Scalable − Python provides a better structure and

support for large programs than

shell scripting.

Apart from the above-mentioned features, Python has

a big list of good features,

few are listed below –

1) It supports functional and structured programming

methods as well as OOP.

2) It can be used as a scripting language or can be

compiled to byte-code for

building large applications.

3) It provides very high-level dynamic data types and

supports dynamic type

checking.

4) It supports automatic garbage collection.

5) It can be easily integrated with C, C++, COM,

ActiveX, CORBA, Java and

.NET.

SYSTEM IMPLEMENTATION

Sample Code

Object_image.py:

coding: utf-8

Object Detection Demo

Welcome to the object detection inference

walkthrough! This notebook will

walk you step by step through the process of using a

pre-trained model to detect

objects in an image. Make sure to follow the

[installation

instructions](https://github.com/tensorflow/models/blo

b/master/object_detection/

g3doc/installation.md) before you start.

Imports

In[]:

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

44

from PIL import Image

from utils import label_map_util

from utils import visualization_utils as vis_util

Model preparation

Any model exported using the

`export_inference_graph.py` tool can be loaded

here simply by changing `PATH_TO_CKPT` to point

to a new .pb file.

By default we use an "SSD with Mobilenet" model

here. See the [detection

model

zoo](https://github.com/tensorflow/models/blob/master

/object_detection/g3doc/d

etection_model_zoo.md) for a list of other models that

can be run out-of-the-box

with varying speeds and accuracies.

What model to download.

MODEL_NAME =

'ssd_mobilenet_v1_coco_11_06_2017'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE =

'http://download.tensorflow.org/models/object_detecti

on/'

Path to frozen detection graph. This is the actual

model that is used for

the object detection.

PATH_TO_CKPT = MODEL_NAME +

'/frozen_inference_graph.pb'

List of the strings that is used to add correct label for

each box.

PATH_TO_LABELS = os.path.join('data',

'mscoco_label_map.pbtxt')

 Page 24

45

NUM_CLASSES = 90

Download Model

if not os.path.exists(MODEL_NAME +

'/frozen_inference_graph.pb'):

print ('Downloading the model')

opener = urllib.request.URLopener()

opener.retrieve(DOWNLOAD_BASE +

MODEL_FILE, MODEL_FILE)

tar_file = tarfile.open(MODEL_FILE)

for file in tar_file.getmembers():

file_name = os.path.basename(file.name)

if 'frozen_inference_graph.pb' in file_name:

tar_file.extract(file, os.getcwd())

print ('Download complete')

else:

print ('Model already exists')

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()

with detection_graph.as_default():

od_graph_def = tf.GraphDef()

with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

serialized_graph = fid.read()

od_graph_def.ParseFromString(serialized_graph)

tf.import_graph_def(od_graph_def, name='')

Loading label map

46

Label maps map indices to category names, so that

when our convolution

network predicts `5`, we know that this corresponds to

`airplane`. Here we use

internal utility functions, but anything that returns a

dictionary mapping integers

to appropriate string labels would be fine

label_map =

label_map_util.load_labelmap(PATH_TO_LABELS)

categories =

label_map_util.convert_label_map_to_categories(label

_map,

max_num_classes=NUM_CLASSES,

use_display_name=True)

category_index =

label_map_util.create_category_index(categories)

Helper code

defload_image_into_numpy_array(image):

(im_width, im_height) = image.size

return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

Detection

For the sake of simplicity we will use only 2 images:

image1.jpg

image2.jpg

If you want to test the code with your images, just

add path to the images to the

TEST_IMAGE_PATHS.

PATH_TO_TEST_IMAGES_DIR = 'test_images'

Running the

tensorflowsessionTEST_IMAGE_PATHS = [

os.path.join(PATH_TO_TEST_IMAGES_DIR,

'image{}.jpg'.format(i)) for i in range(1,

4)]

Size, in inches, of the output images.

47

IMAGE_SIZE = (12, 8)

with detection_graph.as_default():

with tf.Session(graph=detection_graph) as sess:

for image_path in TEST_IMAGE_PATHS:

image = Image.open(image_path)

the array based representation of the image will be

used later in order to

prepare the

result image with boxes and labels on it.

image_np = load_image_into_numpy_array(image)

Expand dimensions since the model expects images

to have shape: [1,

None, None, 3]

image_np_expanded = np.expand_dims(image_np,

axis=0)

image_tensor =

detection_graph.get_tensor_by_name('image_tensor:0'

)

Each box represents a part of the image where a

particular object was

 Page 25

detected.

boxes =

detection_graph.get_tensor_by_name('detection_boxes

:0')

Each score represent how level of confidence for

each of the objects.

Score is shown on the result image, together with the

class label.

scores =

detection_graph.get_tensor_by_name('detection_score

s:0')

classes =

detection_graph.get_tensor_by_name('detection_classe

s:0')

num_detections =

detection_graph.get_tensor_by_name('num_detections:

0')

Actual detection.

(boxes, scores, classes, num_detections) = sess.run(

[boxes, scores, classes, num_detections],

feed_dict={image_tensor: image_np_expanded})

Visualization of the results of a detection.

vis_util.visualize_boxes_and_labels_on_image_array(

image_np,

np.squeeze(boxes),

48

np.squeeze(classes).astype(np.int32),

np.squeeze(scores),

category_index,

use_normalized_coordinates=True,

line_thickness=8)

plt.figure(figsize=IMAGE_SIZE)

plt.imshow(image_np)

TESTING

Software testing can also be stated as the process of

validating and verifying that a software

program/application/product:

1. meets the business and technical requirements that

guided its design and development;

2. Works as expected; and

3. Can be implemented with the same characteristics.

Software testing, depending on the testing method

employed, can be implemented at any time in the

development process. However, most of the test effort

occurs after the requirements have been defined and

the coding process has been completed. As such, the

methodology of the test is governed by the software

development methodology adopted.

Software Test Life Cycle

Test Planning

This phase is also called Test Strategy phase.

Typically, in this stage, a Senior QA

manager will determine effort and cost estimates for

the project and would prepare and finalize the Test

Plan

Activities:

various types of Testing

Test tool selection.

Testing Test tool selection

Test effort estimation

responsibilities.

Test Environment Setup

Test environment decides the software and hardware

conditions under which a work product is tested. Test

environment set-up is one of the critical aspects of

testing process and can be done in parallel with Test

Case Development Stage. Test team may not be

involved in this activity if the customer team provides

 Page 26

the test environment in which case the test team is

required to do a readiness check (smoke testing) of the

givenenvironment.

Activities:

set-up and hardware

and software requirement list for the Test

Environment.

and test data

Test Execution

During this phase test team will carry out the testing

based on the test plans and the test cases prepared.

Bugs will be reported back to the development team

for correction and retesting will be performed.

Activities:

cases Map defects to test cases in RTM

RESULTS

Object Detect in Image

Animal Detection from Image

Multiple Objects Detection in Image

Object Detection with Accuracy from Webcam Video

Object Diction from Webcam Video

 Page 27

Multiple Object Diction from Webcam Video

CONCLUSION

This paper expresses the importance of deep learning

technology applicationsand the impact of dataset for

deep learning through the use of the faster r-cnn on

newdatasets. In recent years, the technology of deep

learning in image classification, objectdetection and

face identification and many other computer vision

tasks have achievedgreat success. Experimental data

shows that the technology of deep learning is

aneffective tool to pass the man-made feature relying

on the drive of experience to thelearning relying on the

drive of data. Large data is the base of the success of

deeplearning, large data just as fuel to the rocket for

deep learning. More and moreapplications are

continually accumulating increasingly rich application

data, which is critical to the further development and

application of deep learning. However, the qualityof

the data affects the deep learning in deed, of course, in

addition to these real data,maybe we can also consider

some of synthetic data to increase the amount of data

in thefurther.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton.

ImageNet classification with deep convolutional neural

networks. In NIPS,2012.

[2] M. D. Zeiler and R. Fergus. Visualizing and

understanding convolutional neural networks. In

ECCV,

[3] K. Simonyan and A. Zisserman. Very deep

convolutional networks for large-scale image

recognition. In ICLR, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. CVPR, 2016. 71

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik,

―Rich feature hierarchies for accurate object

detection and semantic segmentation,‖ in CVPR, 2014.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. FeiFei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009.

[7] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla,

and L. FeiFei. ImageNet Large Scale Visual

Recognition Competition 2012 (ILSVRC2012).

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman. The PASCAL Visual Object

Classes Challenge 2007 (VOC2007) Results, 2007.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman. The PASCAL Visual Object

Classes (VOC) Challenge. IJCV, 2010.

[10] Lin, Tsung Yi, et al. Microsoft COCO: Common

Objects in Context. Computer Vision – ECCV 2014.

Springer International Publishing, 2014:740-755.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial

pyramid pooling in deep convolutional networks for

visual recognition. In ECCV, 2014.

[12] R. Girshick. Fast R-CNN. arXiv:1504.08083,

2015.

[13] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-

cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015.

 Page 28

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and

Jitendra Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. In The

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014.

[15] Ross Girshick. Fast R-CNN. In International

Conference on Computer Vision (ICCV), 2015.

[16] ShaoqingRen, Kaiming He, Ross Girshick, and

Jian Sun. Faster R-CNN: Towards realtime object

detection with region proposal networks. In Advances

in Neural Information Processing Systems (NIPS),

2015.

[17] Joseph Redmon, SantoshDivvala, Ross Girshick,

and Ali Farhadi. You only look once: Unified, real-

time object detection. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

2016.

[18] Wei Liu, DragomirAnguelov, DumitruErhan,

Christian Szegedy, Scott Reed, ChengYang Fu, and

Alexander C. Berg. SSD: Single shot multibox

detector. In ECCV, 2016.

[19] Karen Simonyan and Andrew Zisserman. Very

deep convolutional networks for largescale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

