

 Page 7

Scalable Encryption Algorithm Design & Implementation using

Flow Chart Approach

M Gouri

Department of Computer Science and Engineering,

Shri Vishnu Engineering College for Women (A),

Bhimavaram, Andhra Pradesh 534202, India.

T Narsimha

Department of Computer Science and Engineering,

Shri Vishnu Engineering College for Women (A),

Bhimavaram, Andhra Pradesh 534202, India.

ABSTRACT

The implementation of encryption/decryption

algorithm is the most essential part of the secure

communication. In currently existing encryption

algorithms there is a trade-off between

implementation cost and resulting

performances. SEA is a scalable encryption

algorithm targeted for small embedded applications.

It was initially designed for software implementations

in controllers, smart cards or processors. In this

letter, we investigate its performances in recent

FPGA devices. For this purpose, a loop architecture

of the block cipheris presented. Beyond its low cost

performances, a significant advantage of the

proposed architecture is its full flexibility for any

parameter of the scalable encryption algorithm,

taking advantage of generic Verilog HDL coding.

The letter also carefully describes the implementation

details allowing us to keep small area requirements.

Finally, a comparative performance discussion of

SEAwith the Advanced Encryption Standard Rijndael

and ICEBERG(a cipher purposed for efficient FPGA

implementations) is proposed. It illustrates the

interest of platform/context-oriented block cipher

design and, as far as SEA is concerned, its low area

requirements and reasonable efficiency.

I.INTRODUCTION

Scalable encryption algorithm is targeted for small-

embedded application with limited resources.SEA is a

parametric block cipher for resource

constrainedsystems (e.g. sensor networks, RFIDs) that

has been introducedin [1]. It was initially designed as a

low-cost encryption/authentication routine (i.e. with

small code size andmemory) targeted for processors

with a limited instruction set(i.e. AND, OR, XOR

gates, word rotation and modular

addition).Additionally and contrary to most recent

block ciphers (e.g.the DES [2] and AES Rijndael [3],

[4]), the algorithm takes theplaintext, key and the bus

sizes as parameters and thereforecan be

straightforwardly adapted to various

implementationcontexts and/or security requirements.

Compared to oldersolutions for low cost encryption

like TEA (Tiny EncryptionAlgorithm) [5] or Yuval’s

proposal [6], SEA also benefits froma stronger security

analysis, derived from recent advances inblock cipher

design/cryptanalysis.

In practice, SEA has been proven to be an efficient

solutionfor embedded software applications using

microcontrollers,but its hardware performances have

not yet been investigated.Consequently, and as a first

step towards hardware performanceanalysis, this letter

explores the features of a low costFPGA

encryption/decryption core for SEA. In addition to

theperformance evaluation, we show that the

algorithm’s scalabilitycan be turned into a fully generic

Verilog HDL design, so that anytext, key and bus size

can be straightforwardly re-implementedwithout any

modification of the hardware description

language,with standard synthesis and implementation

tools.

Cite this article as: M Gouri & T Narsimha, "Scalable Encryption

Algorithm Design & Implementation using Flow Chart Approach",

International Journal of Research in Advanced Computer Science

Engineering, Volume 5 Issue 7, 2019, Page 7-14.

 Page 8

In the rest of the letter, we first provide a brief

descriptionof the algorithm specifications. Then we

describe the detailsof our generic loop architecture and

its implementation results.Finally, we discuss some

illustrative comparisons ofthe hardware performances

of SEA, the AES Rijndael and ICEBERG (a cipher

purposed for efficient FPGA implementations) with

respect to their design approach (e.g. flexible

vs.platform/context-oriented).

II. ALGORITHM DESCRIPTION

Parameters and definitions

SEAn,b operates on various text, key and word sizes. It

isbased on a Feistel structure with a variable number of

rounds,and is defined with respect to the following

parameters:

• n: plaintext size, key size.

• b: processor (or word) size.

• nb = n/2b : number of words per Feistel branch.

• nr: number of block cipher rounds.

As only constraint, it is required that n is a multiple of

6b (see[1] for the details). For example, using an 8-bit

processor, wecan derive a 96-bit block ciphers,

denoted as SEA96,8.

Let x be a n/2 -bit vector. We consider two

representations:

• Bit representation: xb = x(n/2− 1) . . . x(2) x(1) x(0).

• Word representation: xw = xnb−1 xnb−2 . . . x2 x1 x0.

Fig. 1. Encrypt/decrypt round and key round.

Basic operations

Due to its simplicity constraints, SEAn,b is based on

alimited number of elementary operations (selected for

theiravailability in any processing device) denoted as

follows:

(1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-

bitsubstitution box S := {0, 5, 6, 7, 4, 3, 1, 2} that can

be appliedbitwise to any set of 3-bit words for

efficiency purposes. Inaddition, we use the following

rotation operations:(4) Word rotation R, defined on nb-

word vectors:

(5) Bit rotation r, defined on nb-word vectors:

where 0 ≤ i ≤nb/3 – 1and >>>and <<<respectively

representthe cyclic right and left shifts inside a word.

The round and key round

Based on the previous definitions, the encrypt round

FE,decrypt round FD and key round FK are pictured in

Figure 1and defined as:

The complete cipher

The cipher iterates an odd number nr of rounds.

Thefollowing pseudo-C code encrypts a plaintext P

under a key Kand produces a ciphertext C. P,C and K

have a parametricbit size n. The operations within the

cipher are performedconsidering parametric b-bit

words.

 Page 9

C=SEAn,b(P,K)

{

% initialization:

L0&R0 = P;

KL0&KR0 = K;

% key scheduling:

where & is the concatenation operator, KR⌊nr/2 ⌋is

taken beforethe switch and C(i) is a nb-word vector of

which all the wordshave value 0 excepted the LSW

that equals i. Decryption isexactly the same, using the

decrypt round FD.

III. IMPLEMENTATION OF A LOOP

ARCHITECTURE

A. Description

The structure of our loop architecture for SEA is

depictedin figure 2, with the round function on the left

part and thekey schedule on the right part. Resource-

consuming blocksare the Sboxes and the mod2b adder;

the Word Rotate andBit Rotate blocks are

implemented by swapping wires.According to the

Specifications, the key schedule containstwo

multiplexors allowing to switch the right and left part

ofthe round key at half the execution of the algorithm

using the appropriate command signal Switch. The

multiplexorcontrolled by HalfExec provides the round

function withthe right part of the round key for the first

half of theexecution and transmits its left part instead

after the switch. Tosupport both encryption and

decryption, we finally added twomultiplexors

controlled by the Encrypt signal. Supplementaryarea

consumption will be caused by the two routing paths.

Fig. 2. Loop implementation of SEA.

 Page 10

The algorithm can easily beneficiate of a modular

implementation,taking as only mandatory parameters

the size ofthe plaintexts and keys n and the word

length b. The numberof rounds nr is an optional input

that can be automaticallyderived from n and b

according to the guidelines given in [1].From the

datapath description of Figure 2, a scalable designcan

then be straightforwardly obtained by using generic

Verilog HDLcoding. A particular care only has to be

devoted to an efficientuse of the mod 2
b
 adders in the

key scheduling part.

In the round function, the mod 2
b
 adders are realizedby

using nb b-bits adders working in parallel without

carrypropagation between them. However, in the key

schedule, thesignal Const_i (provided by the control

part) can only takea value between 0 and nr/2 .

Therefore, it may not be necessaryto use nb adders. If

log2(nr/2) ≤ b, then a single adder issufficient. If

log2(nr/2) > b, then ⌈log2(nr/2)/2] adders will

berequired. In the next section, we detail the

implementationresults of this architecture for different

parameters.

B. ENCRYPTION AND DECRYPTION

FLOWCHART

Figure.3 shows the encryption flow chart used in

design of theprogram. The data and key are the inputs.

In the next step bothinputs are divided into two parts

and applied to the processingblocks. The encryption is

completed in two loop operations. Infirst loop i will

take a value of 1 to nr/2. That is the half executionpart,

the right part of the key is selected during this

operations.Both key and data swap in end of each,

iteration. After finishingthe half execution switch

operation is performed. It is done byswap left and right

part of key and the remaining rounds the keypart will

not swap in the next loop. The same operation

isperformed in next loop except that the left part key is

selected inthe round operation. Finally the encrypt

output is taken byconcatenating right and left part

output of encrypt round.Figure.4 shows decryption

flow chart, the same process is doneduring this

flowchart except that inverse word rotation operationis

performed after bit rotation, instead in encrypt round

the wordrotation is performed before bitwise XOR.

C. Implementation results

Implementation results were extracted after place and

route with the ISE 9.2i tool from Xilinx on a xc4vlx25

VIRTEX-4 platform with speed grade -12. In order to

illustrate themodularity of our architecture, we ran the

design tool fordifferentsets of parameters, with

plaintext/key sizes n rangingfrom 48 to 144 bits and

word lengths of 4, 6, 7, 8, and 12bits. For the control

part, we used the recommended number ofrounds

The computed implementationcosts stand for both the

operative and control parts.A summary of these results

is presented in table I, wherethe area requirements (in

slices), the work frequency andthe throughput are

provided. We observe that the obtainedvalues for the

work frequency are very close for

 Page 11

alltheimplementations. Indeed, the critical path

(passing throughthe key scheduling multiplexors, a

mod 2b adder, the RoundFunction Sbox, a XOR

operator and the multiplexor selectingbetween

encryption or decryption paths) is very similar forany

of our selected values for n and b.

TABLE I

IMPLEMENTATION RESULTS FOR SEA WITH

DIFFERENT n AND b PARAMETERS

For a given n value, it is noticeable that increasing

bdecreases the number of rounds nr and therefore

improvesthe throughput (since work frequencies are

close in all ourexamples). Similarly, for our set of

parameters, increasing b fora given n generally

decreases the area requirements in slices.These

observations lead to the empirical conclusion that,

aslong as the b parameter is not a limiting factor for

the workfrequency, increasing the word size leads to

the most efficientimplementations for both area and

throughput reasons.

D. Comparisons with other block ciphers

For our comparative discussions, we reported a few

implementationresults of the AES Rijndael in Table II.

Weselected the implementations in [7], [8] and [9]

because theirdesign choices fit relatively well with

those of the presentedSEA architectures. Mainly, these

cores do not take advantageof RAM blocks nor loop

unrolling. The four first cores allcorrespond to loop

architectures with a 128-bit datapath. Theyrespectively

have no pipeline (Pipe0) or a 3-stage pipeline(Pipe3)

and use LUT-based or distributed RAM-based

Sboxes.The fifth referenced implementation [7] uses a

32-bit datapathand consequently reduces the area

requirements at the costof a smaller throughput.

Finally, [8] uses a 128-bit datapathwith a pipelined

composite field description of the Sbox. Asa matter of

fact, a lot of other FPGA implementations of theAES

can be found in the open literature, e.g. taking

advantageof different datapath sizes, FPGA RAM

blocks, pipelining,unrolling techniques, ..., e.g. [10],

[11], [12] and [13].

Additionally, we compared these results with those

obtainedfor ICEBERG, a block cipher optimized for

reconfigurablehardware devices. Details on the

ICEBERG architecture anddifferent possible

implementation tradeoffs are discussed in[14]. The

reported result corresponds to a single-round

looparchitecture without pipeline. Compared to the

AES Rijndael,ICEBERG is built upon a combination

of 4-bit operations thatperfectly fit into the FPGAs

LUTs which intently results in avery good ratio

between throughput and area.The implementation

results in Table II lead to the followingobservations.

First, in terms of area requirements (for a datapathsize

equal to the block size), SEA generally exhibits

thesmallest cost. Measuring the area efficiency with

the bit perslice metric leads to a similar conclusion. Of

course, the arearequirements of, e.g. the AES Rijndael

could still be decreasedby using smaller datapaths [15]

and such a comparative tableonly serves as an

indicator rather than a strict comparison.However, in

the present case, these results clearly suggest thelow-

cost purpose of our presented implementations.By

contrast, looking at the throughput per area

metricindicates that these low area requirements come

with weakthroughputs. This is of course mainly due to

the high numberof rounds in SEA.With this respect, it

is interesting to compareSEA and ICEBERG since

their implementation results clearlyillustrate their

respective context/platform-oriented design

 Page 12

approach.Namely SEA is purposed for low cost

applicationswhile ICEBERG optimizes the throughput

per slice.

These numbers also confirm the differences between

specializedalgorithms and standard solutions. It must

be underlinedwith this respect that the AES Rijndael

still rangesrelatively well in terms of hardware cost

and throughputefficiency, compared to the investigated

specialized solutions.Note also that SEA was initially

purposed for low costsoftware implementations. While

these design criteria turnedout to allow low cost

hardware implementations as well, it islikely that

targeting a cipher specifically for low cost

hardwarewould lead to even better solutions, e.g. [16].

Finally, it is also important to emphasize a number

ofadvantages in SEA that cannot be found in other

recent blockciphers, namely its simplicity, scalability

(re-implementingSEA for a new block size does not

require to re-write code), good combination of

encryption and decryption and ability toderive keys

“on the fly” both in encryption and decryption.

TABLE II

IMPLEMENTATION RESULTS OF OTHER

BLOCK CIPHERS.

IV SYNTHESIS AND SIMULATION RESULTS

To investigate the advantages of using our technique in

terms of area overhead against “Fully ECC”and

against the partially protection, we implemented

andsynthesized for a Xilinx XC3S500E different

versions of a32-bit, 32-entry, dual read ports, single

write port registerfile. Once the functional verification

is done, the RTL model is taken to the synthesis

process using the Xilinx ISE tool. In synthesis process,

the RTL model will be converted to the gate level

netlist mapped to a specific technology library. Here in

this Spartan 3E family, many different devices were

available in the Xilinx ISE tool. In order to synthesis

this design the device named as “XC3S500E” has been

chosen and the package as “FG320” with the device

speed such as “-4”.

The corresponding schematics of the adders after

synthesis is shown below.

Fig.3. RTL schematic of SEA

Fig.4. RTL schematic of Internal blocks of SEA

 Page 13

Fig.5. Technology schematic of SEA

Fig.6.Synthesis report of SEA

Fig.7.Simulation of SEA

V. CONCLUSION

This letter presented FPGA implementations of a

scalableencryption algorithm for various sets of

parameters. Thepresented parametric architecture

allows keeping the flexibilityof the algorithm by taking

advantage of generic Verilog HDL coding.It executes

one round per clock cycle, computes the roundand the

key round in parallel and supports both encryptionand

decryption at a minimal cost. Compared to other

recentblock ciphers, SEA exhibits a very small area

utilization thatcomes at the cost of a reduced

throughput. Consequently, itcan be considered as an

interesting alternative for constrainedenvironments.

Scopes for further research include low powerASIC

implementations purposed for RFIDs as well as

furthercryptanalysis efforts and security evaluations.

 Page 14

REFERENCES

[1] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-

J.Quisquater, “SEA:A Scalable Encryption Algorithm

for Small Embedded Applications,”in the Proceedings

of CARDIS 2006, ser. LNCS, vol. 3928,

Taragona,Spain, 2006, pp. 222–236.

[2] Data Encryption Standard, NIST Federal

Information Processing StandardFIPS 46-1, Jan. 1998.

[3] J. Daemen, V. Rijmen, The Design of Rijndael.

Springer-Verlag, 2001.

[4] Advanced Encryption Standard, NIST Federal

Information ProcessingStandard FIPS 197, Nov. 2001.

[5] D. Wheeler and R. Needham, “TEA, a Tiny

Encryption Algorithm,” inthe Proceedings of Fast

Software Encryption - FSE 1994, ser. LNCS,vol. 1008,

Leuven, Belgium, Dec. 1994, pp. 363–366.

[6] G. Yuval, “Reinventing the Travois:

Encryption/MAC in 30 ROMBytes,” in the

Proceedings of Fast Software Encryption - FSE 1997,

ser. LNCS, vol. 1267, Haifa, Israel, Jan. 1997, pp.

205–209.

[7] N. Pramstaller and J. Wolkerstorfer, “A Universal

and Efficient AES Coprocessorfor Field

Programmable Logic Arrays,” in the Proceedings

ofFPL 2004, LNCS, vol. 3203, Leuven, Belgium, Aug.

2004, pp. 565–574.

[8] F.-X. Standaert, G. Rouvroy, J.-J.Quisquater, and

J.-D.Legat, “EfficientImplementation of Rijndael

Encryption in Reconfigurable Hardware:

Improvementsand Design Tradeoffs,” in the

Proceedings of CryptographicHardware and Embedded

Devices - CHES 2003, ser. LNCS, vol. 2779,Cologne,

Germany, Sep. 2003, pp. 334–350.

[9] J. Zambreno, D. Nguyen, and A. Choudhary,

“Exploring Area/DelayTradeoffs in an AES FPGA

implementation,” in the Proceedings of FPL2004, ser.

LNCS, vol. 3203, Leuven, Belgium, Aug. 2004, pp.

575–585.

[10] K. Gaj and P. Chodowiec, “Fast Implementation

and Fair Comparisonof the Final Candidates for

Advanced Encryption Standard Using

FieldProgrammable Gate Arrays,” in Topics in

Cryptology - CT-RSA 2001,LNCS., vol. 2020, San

Fransisco, USA, pp. 84-99.

[11] G. P. Saggese, A. Mazzeo, N. Mazzocca, and A.

G. M. Strollo,“An FPGA-Based Performance Analysis

of the Unrolling, Tiling, and Pipelining of the AES

Algorithm,” in the Proceedings of FPL 2003,

ser.LNCS, vol. 2778, Lisbon, Portugal, Sep. 2003, pp.

292–302.

[12] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar,

“An FPGA Implementationand Performance

Evaluation of the AES Block Cipher

CandidateAlgorithm Finalists,” in AES Candidate

Conference, 2000, pp. 13–27.

[13] K. Jarvinen, M. Tommiska, J. Skytta,

“Comparative Survey of High-Performance

Cryptographic Algorithm Implementations on

FPGAs,”IEE Proceedings on Information Security,

vol. 152, Oct. 2005, pp. 3–12.

