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ABSTRACT 

The implementation of encryption/decryption 

algorithm is the most essential part of the secure 

communication.  In currently existing   encryption   

algorithms   there is   a trade-off   between 

implementation   cost   and   resulting   

performances. SEA is a scalable encryption 

algorithm targeted for small embedded applications. 

It was initially designed for software implementations 

in controllers, smart cards or processors. In this 

letter, we investigate its performances in recent 

FPGA devices. For this purpose, a loop architecture 

of the block cipheris presented. Beyond its low cost 

performances, a significant advantage of the 

proposed architecture is its full flexibility for any 

parameter of the scalable encryption algorithm, 

taking advantage of generic Verilog HDL coding. 

The letter also carefully describes the implementation 

details allowing us to keep small area requirements. 

Finally, a comparative performance discussion of 

SEAwith the Advanced Encryption Standard Rijndael 

and ICEBERG(a cipher purposed for efficient FPGA 

implementations) is proposed. It illustrates the 

interest of platform/context-oriented block cipher 

design and, as far as SEA is concerned, its low area 

requirements and reasonable efficiency. 

 

I.INTRODUCTION 

Scalable encryption algorithm is targeted for small-

embedded application with limited resources.SEA is a 

parametric block cipher for resource 

constrainedsystems (e.g. sensor networks, RFIDs) that 

has been introducedin [1]. It was initially designed as a 

low-cost encryption/authentication routine (i.e. with 

small code size andmemory) targeted for processors 

with a limited instruction set(i.e. AND, OR, XOR 

gates, word rotation and modular 

addition).Additionally and contrary to most recent 

block ciphers (e.g.the DES [2] and AES Rijndael [3], 

[4]), the algorithm takes theplaintext, key and the bus 

sizes as parameters and thereforecan be 

straightforwardly adapted to various 

implementationcontexts and/or security requirements. 

Compared to oldersolutions for low cost encryption 

like TEA (Tiny EncryptionAlgorithm) [5] or Yuval’s 

proposal [6], SEA also benefits froma stronger security 

analysis, derived from recent advances inblock cipher 

design/cryptanalysis. 

 

In practice, SEA has been proven to be an efficient 

solutionfor embedded software applications using 

microcontrollers,but its hardware performances have 

not yet been investigated.Consequently, and as a first 

step towards hardware performanceanalysis, this letter 

explores the features of a low costFPGA 

encryption/decryption core for SEA. In addition to 

theperformance evaluation, we show that the 

algorithm’s scalabilitycan be turned into a fully generic 

Verilog HDL design, so that anytext, key and bus size 

can be straightforwardly re-implementedwithout any 

modification of the hardware description 

language,with standard synthesis and implementation 

tools. 
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In the rest of the letter, we first provide a brief 

descriptionof the algorithm specifications. Then we 

describe the detailsof our generic loop architecture and 

its implementation results.Finally, we discuss some 

illustrative comparisons ofthe hardware performances 

of SEA, the AES Rijndael and ICEBERG (a cipher 

purposed for efficient FPGA implementations) with 

respect to their design approach (e.g. flexible 

vs.platform/context-oriented). 

 

II. ALGORITHM DESCRIPTION 

Parameters and definitions 

SEAn,b operates on various text, key and word sizes. It 

isbased on a Feistel structure with a variable number of 

rounds,and is defined with respect to the following 

parameters: 

• n: plaintext size, key size. 

• b: processor (or word) size. 

• nb = n/2b : number of words per Feistel branch. 

• nr: number of block cipher rounds. 

As only constraint, it is required that n is a multiple of 

6b (see[1] for the details). For example, using an 8-bit 

processor, wecan derive a 96-bit block ciphers, 

denoted as SEA96,8. 

Let x be a n/2 -bit vector. We consider two 

representations: 

• Bit representation: xb = x(n/2− 1) . . . x(2) x(1) x(0). 

• Word representation: xw = xnb−1 xnb−2 . . . x2 x1 x0. 

 
Fig. 1. Encrypt/decrypt round and key round. 

Basic operations 

Due to its simplicity constraints, SEAn,b is based on 

alimited number of elementary operations (selected for 

theiravailability in any processing device) denoted as 

follows: 

(1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-

bitsubstitution box S := {0, 5, 6, 7, 4, 3, 1, 2} that can 

be appliedbitwise to any set of 3-bit words for 

efficiency purposes. Inaddition, we use the following 

rotation operations:(4) Word rotation R, defined on nb-

word vectors: 

 
(5) Bit rotation r, defined on nb-word vectors: 

 
where 0 ≤ i ≤nb/3 – 1and >>>and <<<respectively 

representthe cyclic right and left shifts inside a word. 

 

The round and key round 

Based on the previous definitions, the encrypt round 

FE,decrypt round FD and key round FK are pictured in 

Figure 1and defined as: 

 
 

The complete cipher 

The cipher iterates an odd number nr of rounds. 

Thefollowing pseudo-C code encrypts a plaintext P 

under a key Kand produces a ciphertext C. P,C and K 

have a parametricbit size n. The operations within the 

cipher are performedconsidering parametric b-bit 

words. 
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C=SEAn,b(P,K) 

{ 

% initialization: 

L0&R0 = P; 

KL0&KR0 = K; 

% key scheduling: 

 

 
 

 

where & is the concatenation operator, KR⌊nr/2 ⌋is 

taken beforethe switch and C(i) is a nb-word vector of 

which all the wordshave value 0 excepted the LSW 

that equals i. Decryption isexactly the same, using the 

decrypt round FD. 

 

III. IMPLEMENTATION OF A LOOP 

ARCHITECTURE 

A. Description 

The structure of our loop architecture for SEA is 

depictedin figure 2, with the round function on the left 

part and thekey schedule on the right part. Resource-

consuming blocksare the Sboxes and the mod2b adder; 

the Word Rotate andBit Rotate blocks are 

implemented by swapping wires.According to the 

Specifications, the key schedule containstwo 

multiplexors allowing to switch the right and left part 

ofthe round key at half the execution of the algorithm 

using the appropriate command signal Switch. The 

multiplexorcontrolled by HalfExec provides the round 

function withthe right part of the round key for the first 

half of theexecution and transmits its left part instead 

after the switch. Tosupport both encryption and 

decryption, we finally added twomultiplexors 

controlled by the Encrypt signal. Supplementaryarea 

consumption will be caused by the two routing paths. 

 
Fig. 2. Loop implementation of SEA. 
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The algorithm can easily beneficiate of a modular 

implementation,taking as only mandatory parameters 

the size ofthe plaintexts and keys n and the word 

length b. The numberof rounds nr is an optional input 

that can be automaticallyderived from n and b 

according to the guidelines given in [1].From the 

datapath description of Figure 2, a scalable designcan 

then be straightforwardly obtained by using generic 

Verilog HDLcoding. A particular care only has to be 

devoted to an efficientuse of the mod 2
b
 adders in the 

key scheduling part. 

 

In the round function, the mod 2
b
 adders are realizedby 

using nb b-bits adders working in parallel without 

carrypropagation between them. However, in the key 

schedule, thesignal Const_i (provided by the control 

part) can only takea value between 0 and nr/2  . 

Therefore, it may not be necessaryto use nb adders. If 

log2(nr/2  ) ≤ b, then a single adder issufficient. If 

log2(nr/2 ) > b, then ⌈log2(nr/2 )/2] adders will 

berequired. In the next section, we detail the 

implementationresults of this architecture for different 

parameters. 

 

B. ENCRYPTION AND DECRYPTION 

FLOWCHART 

Figure.3 shows the encryption flow chart used in 

design of theprogram. The data and key are the inputs. 

In the next step bothinputs are divided into two parts 

and applied to the processingblocks. The encryption is 

completed in two loop operations. Infirst loop i will 

take a value of 1 to nr/2. That is the half executionpart, 

the right part of the key is selected during this 

operations.Both key and data swap in end of each, 

iteration. After finishingthe half execution switch 

operation is performed. It is done byswap left and right 

part of key and the remaining rounds the keypart will 

not swap in the next loop. The same operation 

isperformed in next loop except that the left part key is 

selected inthe round operation. Finally the encrypt 

output is taken byconcatenating right and left part 

output of encrypt round.Figure.4 shows decryption 

flow chart, the same process is doneduring this 

flowchart except that inverse word rotation operationis 

performed after bit rotation, instead in encrypt round 

the wordrotation is performed before bitwise XOR. 

 
C. Implementation results 

Implementation results were extracted after place and 

route with the ISE 9.2i tool from Xilinx on a xc4vlx25 

VIRTEX-4 platform with speed grade -12. In order to 

illustrate themodularity of our architecture, we ran the 

design tool fordifferentsets of parameters, with 

plaintext/key sizes n rangingfrom 48 to 144 bits and 

word lengths of 4, 6, 7, 8, and 12bits. For the control 

part, we used the recommended number ofrounds 

 
The computed implementationcosts stand for both the 

operative and control parts.A summary of these results 

is presented in table I, wherethe area requirements (in 

slices), the work frequency andthe throughput are 

provided. We observe that the obtainedvalues for the 

work frequency are very close for 
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alltheimplementations. Indeed, the critical path 

(passing throughthe key scheduling multiplexors, a 

mod 2b adder, the RoundFunction Sbox, a XOR 

operator and the multiplexor selectingbetween 

encryption or decryption paths) is very similar forany 

of our selected values for n and b. 

 

TABLE I 

IMPLEMENTATION RESULTS FOR SEA WITH 

DIFFERENT n AND b PARAMETERS 

 
For a given n value, it is noticeable that increasing 

bdecreases the number of rounds nr and therefore 

improvesthe throughput (since work frequencies are 

close in all ourexamples). Similarly, for our set of 

parameters, increasing b fora given n generally 

decreases the area requirements in slices.These 

observations lead to the empirical conclusion that, 

aslong as the b parameter is not a limiting factor for 

the workfrequency, increasing the word size leads to 

the most efficientimplementations for both area and 

throughput reasons. 

 

D. Comparisons with other block ciphers 

For our comparative discussions, we reported a few 

implementationresults of the AES Rijndael in Table II. 

Weselected the implementations in [7], [8] and [9] 

because theirdesign choices fit relatively well with 

those of the presentedSEA architectures. Mainly, these 

cores do not take advantageof RAM blocks nor loop 

unrolling. The four first cores allcorrespond to loop 

architectures with a 128-bit datapath. Theyrespectively 

have no pipeline (Pipe0) or a 3-stage pipeline(Pipe3) 

and use LUT-based or distributed RAM-based 

Sboxes.The fifth referenced implementation [7] uses a 

32-bit datapathand consequently reduces the area 

requirements at the costof a smaller throughput. 

Finally, [8] uses a 128-bit datapathwith a pipelined 

composite field description of the Sbox. Asa matter of 

fact, a lot of other FPGA implementations of theAES 

can be found in the open literature, e.g. taking 

advantageof different datapath sizes, FPGA RAM 

blocks, pipelining,unrolling techniques, ..., e.g. [10], 

[11], [12] and [13]. 

 

Additionally, we compared these results with those 

obtainedfor ICEBERG, a block cipher optimized for 

reconfigurablehardware devices. Details on the 

ICEBERG architecture anddifferent possible 

implementation tradeoffs are discussed in[14]. The 

reported result corresponds to a single-round 

looparchitecture without pipeline. Compared to the 

AES Rijndael,ICEBERG is built upon a combination 

of 4-bit operations thatperfectly fit into the FPGAs 

LUTs which intently results in avery good ratio 

between throughput and area.The implementation 

results in Table II lead to the followingobservations. 

First, in terms of area requirements (for a datapathsize 

equal to the block size), SEA generally exhibits 

thesmallest cost. Measuring the area efficiency with 

the bit perslice metric leads to a similar conclusion. Of 

course, the arearequirements of, e.g. the AES Rijndael 

could still be decreasedby using smaller datapaths [15] 

and such a comparative tableonly serves as an 

indicator rather than a strict comparison.However, in 

the present case, these results clearly suggest thelow-

cost purpose of our presented implementations.By 

contrast, looking at the throughput per area 

metricindicates that these low area requirements come 

with weakthroughputs. This is of course mainly due to 

the high numberof rounds in SEA.With this respect, it 

is interesting to compareSEA and ICEBERG since 

their implementation results clearlyillustrate their 

respective context/platform-oriented design 
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approach.Namely SEA is purposed for low cost 

applicationswhile ICEBERG optimizes the throughput 

per slice. 

 

These numbers also confirm the differences between 

specializedalgorithms and standard solutions. It must 

be underlinedwith this respect that the AES Rijndael 

still rangesrelatively well in terms of hardware cost 

and throughputefficiency, compared to the investigated 

specialized solutions.Note also that SEA was initially 

purposed for low costsoftware implementations. While 

these design criteria turnedout to allow low cost 

hardware implementations as well, it islikely that 

targeting a cipher specifically for low cost 

hardwarewould lead to even better solutions, e.g. [16]. 

Finally, it is also important to emphasize a number 

ofadvantages in SEA that cannot be found in other 

recent blockciphers, namely its simplicity, scalability 

(re-implementingSEA for a new block size does not 

require to re-write code), good combination of 

encryption and decryption and ability toderive keys 

“on the fly” both in encryption and decryption. 

 

TABLE II 

IMPLEMENTATION RESULTS OF OTHER 

BLOCK CIPHERS. 

 
 

IV SYNTHESIS AND SIMULATION RESULTS 

To investigate the advantages of using our technique in 

terms of area overhead against “Fully ECC”and 

against the partially protection, we implemented 

andsynthesized for a Xilinx XC3S500E different 

versions of a32-bit, 32-entry, dual read ports, single 

write port registerfile. Once the functional verification 

is done, the RTL model is taken to the synthesis 

process using the Xilinx ISE tool. In synthesis process, 

the RTL model will be converted to the gate level 

netlist mapped to a specific technology library. Here in 

this Spartan 3E family, many different devices were 

available in the Xilinx ISE tool. In order to synthesis 

this design the device named as “XC3S500E” has been 

chosen and the package as “FG320” with the device 

speed such as “-4”. 

 

The corresponding schematics of the adders after 

synthesis is shown below. 

 
Fig.3. RTL schematic of SEA 

 
Fig.4. RTL schematic of Internal blocks of SEA 
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Fig.5. Technology schematic of SEA 

 

 
Fig.6.Synthesis report of SEA 

 
Fig.7.Simulation of SEA 

 

V. CONCLUSION 

This letter presented FPGA implementations of a 

scalableencryption algorithm for various sets of 

parameters. Thepresented parametric architecture 

allows keeping the flexibilityof the algorithm by taking 

advantage of generic Verilog HDL coding.It executes 

one round per clock cycle, computes the roundand the 

key round in parallel and supports both encryptionand 

decryption at a minimal cost. Compared to other 

recentblock ciphers, SEA exhibits a very small area 

utilization thatcomes at the cost of a reduced 

throughput. Consequently, itcan be considered as an 

interesting alternative for constrainedenvironments. 

Scopes for further research include low powerASIC 

implementations purposed for RFIDs as well as 

furthercryptanalysis efforts and security evaluations. 
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