’ ISSN No : 2454-4221 (Print)
: 5 ISSN No : 2454-423X (Online)

| -
18 ] 2714 ) %) 11 ) ¢ H1 < £oLo9aremn )
! K 1100} 1 18 : )i { B ! 1
ALV AlcAALIVIIAAY U 11 a8 Ui AN\ .« A1 1A Al GAiIILC U}

ymputer Science Lnegineering

A Peer Reviewed Open Access International Journal
www.ijracse.com

Brain Cancer Cell Classification Method Using Computed
Aided Diagnosis (CAD) System

Hmmam T.Hassan,M.Sc, Zeinab A.Mustafa,PhD, Banazier A.lbraheem,PhD & Rania.E Mahdi,PhD.

Abstract i. Introduction

Automatic classification of the brain tumor
may increase the efficiency and save the time
for diagnosing brain tumor; early detection of
brain cancer can increase the chance of
survival among people. Computed aided
diagnosis system for the classification of brain
cancer is developed. Overall, there are three
main processes used throughout the report;
data collection, image processing and finally
the classification process. MATLAB is used in
every process made throughout the project.
Computer aided diagnosis (CAD) systems can
enhance the diagnostic capabilities of
physicians and reduce the time required for
accurate diagnosis. The experiments were
carried out on 50 images consisting of 20
normal and 50 abnormal (malignant and
benign tumors) from a real human brain MRI
dataset. Haralick’s texture features extracted
from the ROI the effective features are then
classified using feed-forward back
propagation neural network. The classification
accuracy is 96% which was significantly good.
Moreover, the proposed technique
demonstrates its effectiveness compared with
the other machine learning recently published
techniques. The results revealed that the
proposed hybrid approach is accurate and fast
and robust. Finally, possible future directions
are suggested.

Keywords: Brain tumor, Computed Aided
diagnosis, Haralick’s texture features, neural
network.

Volume No: 8(2022) Issue No: 2(July)
www.ijracse.com

Cancer of the brain is usually called a brain
tumor. When most normal cells grow old or
get damaged, they die, and new cells take their
place. Sometimes, this process goes wrong.
New cells form when the body doesn’t need
them, and old or damaged cells don’t die as
they should. The buildup of extra cells often
forms a mass of tissue called a growth or
tumor [1] [2]. Primary brain tumors can be
benign or malignant:

Benign: brain tumors do not contain cancer
cells, usually, benign tumors can be removed,
and they Seldom grow back; benign brain
tumors usually have an obvious border or
edge. Cells from benign tumors rarely invade
tissues around them. They don’t spread to
other parts of the body. However, benign
tumors can press on sensitive areas of the
brain and cause serious health problems,
unlike benign tumors in most other parts of the
body, benign brain tumors are sometimes life
threatening, benign brain tumors may become
malignant [2].

Malignant: brain tumors (also called brain
cancer) contain cancer cells malignant brain
tumors are generally more serious and often
are a threat to life, they are likely to grow
rapidly
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and crowd or invade the nearby healthy brain
tissue, Cancer cells may break away from
malignant brain tumors and spread to other
parts of the brain or to the spinal cord. They
rarely spread to other parts of the body [2].

The symptoms of a brain tumor depend on
tumor size, type, and location. Symptoms may
be caused when a tumor presses on a nerve or
harms a part of the brain. Also, they may be
caused when a tumor blocks the fluid that
flows through and around the brain, or when
the brain swells because of the buildup of fluid

[2].

ii. Methodology

a. Data collection

All MRI scan images of brain that used on this
project were collected from Harvard citations
from were found in the Web of Science
database. The entire MRI scan is in GIF
format .The database consists of 20 images of
normal brain from a women in a range of (51 -
81) vyears old, in excellent health, who
participated in research on normal aging, and
30 images with brain tumor from A women
sought medical attention because of gradually
increasing right hemiparesis (weakness) and
hemianopia (visual loss). At craniotomy
(8/90), left parietal anaplastic astrocytoma was
found. A right frontal lesion was biopsied in
(8/94). Recurrent tumor was suspected on the
basis of the imaging, and was confirmed
pathologically [3].

b. Image processing
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Image processing procedures play the most
crucial part for the project. The original
images in the Gif format, the first step is
transfer the images into JBEG format, and
then the bilateral filter is used.

The region of interest on the image is area of
tumor which is needed to extract the features
from it. To select this area, the function
IMCROP on MATLARB is used, the area of the
tumor is precisely selected.

c. Features Extraction

Feature extracted using SGLDM from the
region of interest then it tested using ttest
function to be used for next step.

d. Feature classification

There are a large number of statistical learning
methods that can be applied to this image
classification problem. In this project the feed-
forward back propagation neural network was
used.

Artificial neural networks are biologically
inspired classification algorithms that consist
of an input layer of nodes, one or more hidden
layers and an output layer. Each node in a
layer has one corresponding node in the next
layer, thus creating the stacking effect [4].
Artificial neural networks are the very
versatile tools and have been widely used to
tackle many issues [5, 6]. Feed-forward neural
networks (FNN) are one of the popular
structures among artificial neural networks.
These efficient networks are widely used to
solve complex problems by modeling complex
input-output relationships [7, 8].
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BPLAs were proposed by Rumelhart et al. [9].
They have since become famous learning
algorithms among ANNs. In the learning
process, to reduce the inaccuracy of ANNS,
BPLAs use the gradient-decent search method
to adjust the connection weights. The structure
of a back-propagation ANN is shown in
Figure below. The output of each neuron is the
aggregation of the numbers of neurons of the
previous level multiplied by its corresponding
weights. The input values are converted into
output signals with the calculations of
activation functions [10]. Back-propagation
ANNs have been widely and successfully
applied in diverse applications, such as pattern
recognition, location selection and
performance evaluations.

Input laver " Hidden laver Output laver >

/ V

Figure 1: Back-propagation ANN

ii. Results and Discussion
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The two images below shows the differences
of the filtered image from the original image,
when applying the bilateral filtering.

Figure 2: Original Image
Figure 3: Filtered image

The differences are very clear on the filtered
image it’s appearing more sharp with more
details and with less noise. The next step is to
take the region of interest from the filtered
image.
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Figure 4: Selection of the region of interest
(ROI)

The region of interest which contains the
tumor tissue in the cancerous images was
selected to be used for the next step.
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Feature extraction was done one the selected
region using spatial gray level dependence
matrices (SGLDM) method, the (SGLDM)
returns two values mf and rf as shown in the
two figures below.
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Figure 5: (a)The thirteen mf features of 30
brain tumor MRI images and 20 normal MRI
images results from SGLDM (b) The thirteen
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Figure 6: Confusion matrix

True Positives (TP)
Brain tissue marked as tumor tissues which
were also classified as tumor tissue.

True Negatives (TN)

Brain tissues which were marked as Normal
Brain tissue and that were also classified as
Normal brain tissue.

False Positives (FP)

Tumor tissues which were marked as Normal
tissue, but were classified as brain tumor
tissue.

False Negatives (FN)

Tumor tissue which were marked as tumor
tissue but which were classified as normal
brain tissues.

The accuracy is the overall evaluation of the
classifier for the pattern recognition and
classification of the brain tumor. Therefore,
the proposed system has successfully been
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able to discriminate between tumor and
normal tissue with a precision level of 96%.

Graphical User Interface (GUI)
The graphical user interface was designed for
the system to be more applicable.

Brain Tumor Detection Program

Figure 7: GUI for the brain tumor detection

The GUI contains three pushbutton named by
get image, crop image and diagnose.

Get image: when it’s pressed by the user it’s
automatically open the folder of the images to
be selected by the user.

Crop image: it’s used to select the region of
interest (ROI) from the image.

Diagnose: when it’s pressed its show the
result of the diagnosing either its tumor tissue
or normal tissue.

The two figures below shows two different
diagnose by the system.
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Brain Tumor Detection Program

Tumor Tissue

Figure 8: GUI of brain tumor diagnosis
system with the illustration of a tumor tissue

Brain Tumor Detection Program

Y

)

Normal Tissue

Figure 9: GUI of brain tumor diagnosis
system with the illustration of a normal tissue

Conclusion

The algorithm were implemented based on 50
brain MRI images consisting of 20 normal and
30 abnormal (malignant and benign tumors)
from a real human brain MRI dataset. The
dataset used to performance evaluation. The
dataset used consists of axial, T2-weighted,
256-256 pixel MR brain images. These
images were collected from the Harvard
Medical School website. A preprocessing
stage should be considered to enhance the
quality of the MRI brain before segmentation,
feature extraction and classification. Image
processing and enhancement stage is the
simplest categories of medical image
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processing. This stage is used for reducing
image noise, highlighting edges, or displaying
digital images. Applying the imcrop function
on MATLAB for the segmentation of RIO in
MRI image.

Based on adjusted and segmented images
produced, a set of features are extracted from
each image. Those features are tested using
ttest function to select the significant features
only. Back propagation feed forward neural
network used to classify the selected feature.
A graphical user interface (GUI) was designed
to be easier for the use and to give better
presentation.

iv. Conclusion and future work

With the advance of computational
intelligence and machine learning techniques,
computed aided diagnosis attracts more
attention for brain tumor detection. It has
become one of the most important research
subjects in medical imaging and diagnostic
radiology. In this study, we reviewed current
studies of the different segmentation, feature
extraction and classification algorithms. The
proposed technique first employs the spatial
gray level dependence matrices (SGLDM) to
extract features from MRI images, and then
applies feed forward back propagation neural
network to classify inputs into normal or
abnormal based on feature selection
parameters. According to the experimental
results, the designed method is efficient for
automated diagnosis of brain tumor. The
proposed method produces classification
specificity of 92% rate. These experiment
results show that the proposed classifier
method can successfully differentiate between
healthy and pathologically cases and can
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increase the diagnostic performance of human
brain abnormality. The challenge remains to
provide a generalized CAD system that works
in all cases regardless of database size and
quality. So, CAD system remains an open
problem. Future work would deal with
classification of brain tumors into different
grades by using advanced analysis methods, so
that the surrender of brain tumor diagnosis can
be increased. Using a large number of data
from different sources.
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